Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 2004 Jan;48(1):352–357. doi: 10.1128/AAC.48.1.352-357.2004

In Vitro Activities of DA-7867, a Novel Oxazolidinone, against Recent Clinical Isolates of Aerobic and Anaerobic Bacteria

Dongeun Yong 1, Jong Hwa Yum 1, Kyungwon Lee 1,*, Yunsop Chong 1, Sung Hak Choi 2, Jae Keol Rhee 2
PMCID: PMC310204  PMID: 14693566

Abstract

In vitro activities of DA-7867, a novel oxazolidinone, were compared to those of linezolid and commonly used antimicrobials. DA-7867 had the lowest MIC for 90% of the aerobic gram-positive bacterial strains tested, ≤0.25 μg/ml, and it was more potent than linezolid.


Increased antimicrobial resistance in gram-positive cocci, particularly staphylococci, enterococci, and pneumococci, has become a problem in recent years (11, 20). The introduction of oxazolidinones to clinical practice represents an important advance in the therapy of infections due to these gram-positive bacteria (3). Linezolid has been reported to be mainly potent against gram-positive anaerobes, with no useful activity against gram-negative anaerobes (4, 16). Significantly, the mode of action of oxazolidinone is specific, and no cross-resistance between it and other antimicrobial agents has been observed (7).

DA-7867 (Dong-A Pharmaceutical Co., Yongin, Korea) is a new hetero-ring-substituted pyridine-containing oxazolidinone, (S)-[N-3-(4-(2-(1-methyl-5-tetrazolyl)-pyridin-5-yl)-3-fluorophenyl)-2-oxo-5-oxazolidinyl]methyl acetamide, which was selected from among several candidate chemicals (Fig. 1). An animal study showed that it has potential for the treatment of infections of the skin, soft tissue, and the respiratory tract (T. Lee, D. Kim, J. Cho, S. Choi, W. Im, and J. Rhee, Abstr. 42nd Intersci. Conf. Antimicrob. Agents Chemother., abstr. F-1314, 2002).

FIG. 1.

FIG. 1.

Structure of DA-7867.

In vitro studies had shown that DA-7867 was more potent than linezolid against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), penicillin-resistant Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis (W. Im, T. Lee, J. Cho, S. Choi, and J. Rhee, Abstr. 42nd Intersci. Conf. Antimicrob. Agents Chemother., abstr. F-1311, 2002; S. Choi, T. Lee, W. Im, J. Cho, D. Kim, J. Rhee, and W. Kim, Abstr. 42nd Intersci. Conf. Antimicrob. Agents Chemother., abstr. F-1313, 2002). However, the number of isolates tested was limited, and in vitro activities against coagulase-negative staphylococci, group A and B streptococci, and anaerobic bacteria have not been determined.

In this study, we compared the in vitro activities of DA-7867 against major aerobic gram-positive pathogens, gram-negative respiratory pathogens, and anaerobic bacteria with those of linezolid and other antimicrobial agents.

(This study was presented in part at the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, Calif., 27 to 30 September 2002 [K. Lee et al., abstr. F-1312, 2002].)

Bacterial strains were isolated in 2000 and 2001 from patients at a Korean tertiary-care hospital. The species were identified by conventional methods and by using either the ID 32 GN or the ATB 32A system (bioMérieux, Marcy-l'Etoile, France).

Antimicrobial susceptibility was determined as recommended by the NCCLS (13, 14). The antimicrobial agents used were linezolid (Dong-A Pharmaceutical Co.), erythromycin, tetracycline, penicillin G (Sigma Chemical Co., St. Louis, Mo.), clindamycin (Korea Upjohn, Seoul, Korea), trimethoprim, sulfamethoxazole (Dong Wha Pharmaceutical Co., Seoul, Korea), levofloxacin (Daiichi Pharmaceutical Co., Tokyo, Japan), ampicillin, chloramphenicol (Chong Kun Dang Pharmaceutical Co., Seoul, Korea), sulbactam (Pfizer Korea, Seoul, Korea), cefotaxime (Handok Pharmaceutical Co., Seoul, Korea), metronidazole (Choongwae Pharmaceutical Co., Seoul, Korea), and vancomycin (Daewoong Pharmaceutical Co., Seoul, Korea). An anaerobic chamber (Forma Scientific, Marietta, Ohio) was used for anaerobic incubation, and American Type Culture Collection strains of S. aureus (29213), Enterococcus faecalis (29212), S. pneumoniae (49619), H. influenzae (49247), Bacteroides fragilis (25285), and B. thetaiotaomicron (29741) were used as controls. The linezolid breakpoint was used for DA-7867, for which the breakpoint has not yet been defined. For M. catarrhalis, the criteria for staphylococci were applied.

In many Korean hospitals, the proportion of MRSA was around 70% (9). In this study, all staphylococci were inhibited by DA-7867 at 0.25 μg/ml and linezolid at 2 μg/ml (Table 1). The activity of linezolid was similar to those reported previously (1, 6, 8). The MIC of DA-7867 for 90% of the staphylococcal strains tested (MIC90) was eightfold lower than that of linezolid. All MRSA strains were susceptible to DA-7867 and linezolid, but the majority were resistant to erythromycin, clindamycin, gentamicin, levofloxacin, and tetracycline.

TABLE 1.

Antimicrobial activities of DA-7867 compared with those of other antibiotics against aerobic and anaerobic bacteria

Organism(s) (no. of isolates tested) and antimicrobial agent MIC (μg/ml)
% of isolatesd
Range 50% of strains 90% of strains S I R
Methicillin-susceptible Staphylococcus aureus (33)
    DA-7867 0.12-0.25 0.25 0.25 100 NAc NA
    Linezolid 1-2 2 2 100 NA NA
    Erythromycin 0.12-128 0.25 64 79 0 21
    Clindamycin ≤0.06->128 ≤0.06 ≤0.06 97 0 3
    Cotrimoxazole ≤0.06-16 ≤0.06 0.12 97 NA 3
    Gentamicin ≤0.06-128 ≤0.06 64 79 3 18
    Levofloxacin 0.12-1 0.25 0.25 100 0 0
    Tetracycline 0.12-128 0.25 32 79 0 21
MRSA (30)
    DA-7867 0.06-0.25 0.12 0.25 100 NA NA
    Linezolid 1-2 2 2 100 NA NA
    Erythromycin 0.5->128 >128 >128 7 0 93
    Clindamycin ≤0.06->128 >128 >128 10 0 90
    Cotrimoxazole ≤0.06-128 0.12 64 83 NA 17
    Gentamicin 0.25->128 128 >128 7 0 93
    Levofloxacin 0.5->128 >128 >128 7 0 93
    Tetracycline 0.5-128 64 128 13 0 87
Methicillin-susceptible coagulase-negative staphylococci (22)
    DA-7867 0.06-0.25 0.12 0.12 100 NA NA
    Linezolid 0.5-2 1 1 100 NA NA
    Erythromycin ≤0.06-128 0.12 32 77 0 23
    Clindamycin ≤0.06->128 ≤0.06 0.12 96 0 4
    Cotrimoxazole ≤0.06-8 0.12 8 82 NA 18
    Gentamicin ≤0.06-64 1 4 96 0 4
    Levofloxacin 0.06-8 0.25 1 91 0 9
    Tetracycline ≤0.06-128 0.25 64 64 5 32
Methicillin-resistant coagulase-negative staphylococci (29)
    DA-7867 ≤0.03-0.25 0.12 0.25 100 NA NA
    Linezolid 0.25-2 1 2 100 NA NA
    Erythromycin 0.25->128 >128 >128 14 0 86
    Clindamycin ≤0.06->128 >128 >128 45 3 52
    Cotrimoxazole ≤0.06-8 2 8 55 NA 45
    Gentamicin ≤0.06-128 32 128 24 14 62
    Levofloxacin 0.12-32 0.5 8 52 10 38
    Tetracycline 0.25->128 2 64 62 3 35
Vancomycin-susceptible Enterococcus faecalis (49)
    DA-7867 ≤0.06-0.12 0.12 0.12 100 0 0
    Linezolid 0.5-2 1 2 100 0 0
    Ampicillin 0.25-4 0.5 2 100 NA 0
    Erythromycin ≤0.12->128 >128 >128 12 8 80
    Levofloxacin 1-64 2 64 61 0 39
    Tetracycline 0.5->128 64 128 12 4 84
    Vancomycin 1-2 2 2 100 0 0
    Teicoplanin ≤0.12-1 0.25 0.5 100 0 0
Vancomycin-resistant E. faecalis (10)
    DA-7867 ≤0.06-0.12 ≤0.06 0.12 100 0 0
    Linezolid 0.5-2 1 1 100 0 0
    Ampicillin 0.5-4 2 4 100 NA 0
    Erythromycin >128 >128 >128 0 0 100
    Levofloxacin 16-64 64 64 0 0 100
    Tetracycline 16-64 32 64 0 0 100
    Vancomycin >128 >128 >128 0 0 100
    Teicoplanin 64->128 >128 >128 0 0 100
Vancomycin-susceptible E. faecium (29)
    DA-7867 ≤0.06-0.12 0.12 0.12 100 0 0
    Linezolid 0.5-2 2 2 100 0 0
    Ampicillin 1->128 >128 >128 3 NA 97
    Erythromycin ≤0.12->128 >128 >128 3 7 90
    Levofloxacin 1-128 64 128 7 0 93
    Tetracycline ≤0.12-64 0.5 8 90 7 3
    Vancomycin 0.5-4 0.5 1 100 0 0
    Teicoplanin 0.25-1 0.5 1 100 0 0
Vancomycin-resistant E. faecium (30)
    DA-7867 ≤0.06-0.12 0.12 0.12 100 0 0
    Linezolid 0.5-2 2 2 100 0 0
    Ampicillin 16->128 >128 >128 0 NA 100
    Erythromycin 64->128 >128 >128 0 0 100
    Levofloxacin 8-128 64 128 0 0 100
    Tetracycline ≤0.12-32 0.25 1 90 0 10
    Vancomycin >128 >128 >128 0 0 100
    Teicoplanin 4->128 64 128 3 13 84
Streptococcus pneumoniae (22)
    DA-7867 ≤0.008-0.12 0.03 0.03 100 NA NA
    Linezolid 0.5-2 1 1 100 NA NA
    Penicillin G 0.03-2 1 2 14 63 23
    Cefotaxime ≤0.008-2 1 2 36 50 14
    Clindamycin ≤0.06->128 >128 >128 27 0 73
    Erythromycin 0.12->128 128 128 5 0 95
    Cotrimoxazole 0.5-64 8 32 36 0 64
    Levofloxacin 8-128 64 128 0 0 100
    Tetracycline 8-64 16 32 0 0 100
Streptococcus pyogenes (15)
    DA-7867 ≤0.008-0.12 0.06 0.12 100 NA NA
    Linezolid 0.25-1 0.5 1 100 NA NA
    Penicillin G ≤0.008-0.015 ≤0.008 ≤0.008 100 NA NA
    Cefotaxime ≤0.008-0.015 ≤0.008 0.015 100 0 0
    Clindamycin ≤0.06 ≤0.06 ≤0.06 100 0 0
    Erythromycin 0.12->128 0.12 16 87 0 13
    Levofloxacin 0.12-2 0.5 1 100 0 0
Streptococcus agalactiae (15)
    DA-7867 ≤0.008-0.12 0.06 0.12 100 NA NA
    Linezolid 0.015-1 0.5 1 100 NA NA
    Penicillin G 0.015-0.06 0.03 0.06 100 NA NA
    Cefotaxime ≤0.008-0.06 0.06 0.06 100 0 0
    Clindamycin ≤0.06->128 ≤0.06 128 73 0 27
    Erythromycin ≤0.06->128 ≤0.06 >128 87 0 13
    Levofloxacin 0.25-0.5 0.5 0.5 100 0 0
Moraxella catarrhalis (24)
    DA-7867 0.25-8 0.5 0.5 96 NA NA
    Linezolid 2-32 4 4 96 NA NA
    Penicillin G 0.015-32 8 16 9 NA 91
    Cefaclor 0.25-16 1 8 96 4 0
    Clindamycin ≤0.06-32 0.5 2 70 25 4
    Erythromycin ≤0.06-64 0.12 0.5 91 0 9
    Cotrimoxazole 0.12-8 0.25 1 96 NA 4
    Levofloxacin 0.015-0.25 0.06 0.06 100 0 0
    Tetracycline ≤0.06-16 0.25 0.5 91 0 9
    Gentamicin ≤0.06-0.25 0.12 0.25 100 0 0
Haemophilus influenzae (24)
    DA-7867 0.25-4 2 2 NA NA NA
    Linezolid 2-8 8 8 NA NA NA
    Ampicillin 0.25->128 32 >128 21 0 79
    Ampicillin-sulbactam 0.25-8 2 8 58 NA 42
    Cefaclor 1-64 8 32 50 29 21
    Cefuroxime 0.25-32 1 8 84 8 8
    Cefotaxime ≤0.008-1 0.03 0.06 100 NA NA
    Azithromycin 0.5-4 2 4 100 NA NA
    Cotrimoxazole 0.25-32 16 32 17 4 79
    Levofloxacin 0.03-1 0.03 0.06 100 NA NA
    Tetracycline 0.12-8 0.5 8 71 4 25
Peptostreptococcus spp. (56)
    DA-7867 ≤0.06-2 ≤0.06 0.12 NA NA NA
    Linezolid 0.5-8 1 2 NA NA NA
    Ampicillin ≤0.06-32 0.25 16 75 0 25
    Ampicillin-sulbactam ≤0.06-16 0.25 16 89 11 0
    Piperacillin ≤0.06-32 0.25 16 100 0 0
    Piperacillin-tazobactam ≤0.06-32 0.12 16 100 0 0
    Cefoxitin ≤0.06-16 0.5 8 100 0 0
    Cefotetan ≤0.06-128 1 64 77 4 20
    Imipenem ≤0.06-2 ≤0.06 2 100 0 0
    Clindamycin ≤0.06->128 0.5 64 75 4 21
    Metronidazole 0.25-32 2 16 84 14 2
    Chloramphenicol 1-64 2 4 95 0 5
Clostridium perfringens (17)
    DA-7867 0.12 0.12 0.12 NA NA NA
    Linezolid 2 2 2 NA NA NA
    Ampicillin ≤0.06-0.12 ≤0.06 0.12 100 0 0
    Ampicillin-sulbactam ≤0.06-0.12 ≤0.06 0.12 100 0 0
    Piperacillin ≤0.06-0.5 0.25 0.5 100 0 0
    Piperacillin-tazobactam ≤0.06-1 0.25 0.5 100 0 0
    Cefoxitin 0.12-2 1 2 100 0 0
    Cefotetan ≤0.06-2 1 2 100 0 0
    Imipenem ≤0.06-0.12 ≤0.06 0.12 100 0 0
    Clindamycin ≤0.06-4 2 4 53 47 0
    Metronidazole 4-16 16 16 41 59 0
    Chloramphenicol 2-4 4 4 100 0 0
    Vancomycin 0.5-1 0.5 1 NA NA NA
Clostridium difficile (15)
    DA-7867 ≤0.06-0.25 0.12 0.25 NA NA NA
    Linezolid 0.5-4 2 2 NA NA NA
    Ampicillin 0.5-2 0.5 1 73 20 7
    Ampicillin-sulbactam 0.5-2 0.5 1 100 0 0
    Piperacillin 2-8 2 8 100 0 0
    Piperacillin-tazobactam 2-8 2 8 100 0 0
    Cefoxitin 128->128 128 128 0 0 100
    Cefotetan 16-32 32 32 27 73 0
    Imipenem 4-16 8 8 13 80 7
    Clindamycin 1->128 >128 >128 7 7 87
    Metronidazole 1-4 4 4 100 0 0
    Chloramphenicol 2-32 8 32 33 27 40
    Vancomycin 0.25-2 0.5 1 NA NA NA
Other Clostridium spp. (10)
    DA-7867 ≤0.06-1 0.12 0.5 NA NA NA
    Linezolid 0.5-8 2 8 NA NA NA
    Ampicillin 0.12->128 0.5 32 50 20 30
    Ampicillin-sulbactam 0.12-16 0.25 1 90 10 0
    Piperacillin 0.5->256 1 32 90 0 10
    Piperacillin-tazobactam 0.5-16 2 16 100 0 0
    Cefoxitin 0.5-128 8 64 50 30 20
    Cefotetan 0.5->128 16 >128 70 10 20
    Imipenem ≤0.06-2 0.5 2 100 0 0
    Clindamycin ≤0.06->128 2 >128 50 0 50
    Metronidazole 1->128 32 64 30 10 60
    Chloramphenicol 0.5-16 4 8 90 10 0
    Vancomycin 0.5->16 2 16 NA NA NA
Other anaerobic gram-positive rodsa (14)
    DA-7867 ≤0.06 ≤0.06 ≤0.06 NA NA NA
    Linezolid 0.25-1 1 1 NA NA NA
    Ampicillin ≤0.06-4 0.25 4 71 7 21
    Ampicillin-sulbactam ≤0.06-4 0.25 4 100 0 0
    Piperacillin ≤0.06-32 2 16 100 0 0
    Piperacillin-tazobactam ≤0.06-32 0.5 16 100 0 0
    Cefoxitin ≤0.06-128 4 32 79 14 7
    Cefotetan 0.5-128 4 64 57 21 21
    Imipenem ≤0.06-2 ≤0.06 1 100 0 0
    Clindamycin ≤0.06->128 ≤0.06 >128 79 0 21
    Metronidazole 0.5->128 32 >128 36 7 57
    Chloramphenicol 0.5-4 2 4 100 0 0
    Vancomycin 0.5-1 1 1 NA NA NA
Bacteroides fragilis (34)
    DA-7867 1-2 1 2 NA NA NA
    Linezolid 4 4 4 NA NA NA
    Ampicillin-sulbactam 0.5-16 1 8 94 6 0
    Piperacillin 4->256 32 >256 59 3 38
    Piperacillin-tazobactam 0.06-8 2 4 100 0 0
    Cefoxitin 4->128 8 32 88 3 9
    Cefotetan 2->128 8 128 82 0 18
    Imipenem ≤0.06-2 0.25 0.5 100 0 0
    Clindamycin 0.5->128 >128 >128 35 6 59
    Metronidazole 2-8 4 8 100 0 0
    Chloramphenicol 4-8 4 8 100 0 0
B. thetaiotaomicron (15)
    DA-7867 1-8 2 4 NA NA NA
    Linezolid 4-8 4 8 NA NA NA
    Ampicillin-sulbactam 1-64 2 32 80 7 13
    Piperacillin 16->256 64 >256 27 33 40
    Piperacillin-tazobactam 4->256 16 16 93 0 7
    Cefoxitin 8-64 16 32 53 40 7
    Cefotetan 8->128 128 >128 7 20 73
    Imipenem 0.12-16 0.5 4 93 0 7
    Clindamycin 4->128 >128 >128 0 20 80
    Metronidazole 2-8 2 4 100 0 0
    Chloramphenicol 4-8 8 8 100 0 0
Other Bacteroides spp. (11)
    DA-7867 0.5-4 2 2 NA NA NA
    Linezolid 2-4 4 4 NA NA NA
    Ampicillin-sulbactam 0.5-32 8 16 64 27 9
    Piperacillin 8->256 >256 >256 27 9 64
    Piperacillin-tazobactam 2-128 4 128 82 0 18
    Cefoxitin 4-64 16 32 64 27 9
    Cefotetan 16->128 32 128 18 36 45
    Imipenem 0.25-2 0.5 1 100 0 0
    Clindamycin ≤0.12->128 >128 >128 27 0 73
    Metronidazole 1-4 4 4 100 0 0
    Chloramphenicol 4-8 8 8 100 0 0
Other anaerobic gram-negative rodsb (27)
    DA-7867 ≤0.06-2 0.25 1 NA NA NA
    Linezolid 0.5-8 2 8 NA NA NA
    Ampicillin-sulbactam ≤0.06-4 1 4 100 0 0
    Piperacillin 0.06->256 16 128 67 22 11
    Piperacillin-tazobactam ≤0.06-16 ≤0.06 4 100 0 0
    Cefoxitin ≤0.06-16 1 8 100 0 0
    Cefotetan ≤0.06-64 4 32 67 30 4
    Imipenem ≤0.06-2 ≤0.06 2 100 0 0
    Clindamycin ≤0.06->128 ≤0.06 >128 70 4 26
    Metronidazole ≤0.12-8 2 8 100 0 0
    Chloramphenicol 1-8 2 4 100 0 0
a

Four Eubacterium spp., three Bifidobacterium spp., four Actinomyces spp., and three Propionibacterium acnes strains.

b

Nineteen Prevotella and Porphyromonas spp. and eight Fusobacterium spp.

c

NA, not applicable.

d

S, susceptible; I, intermediate; R, resistant.

VRE have become prevalent in Korea (17). All enterococci, including VRE, were inhibited by DA-7867 at 0.12 μg/ml and by linezolid at 2 μg/ml, which is also in agreement with prior reports (5, 18) (Table 1). The MIC90 of DA-7867 was 16-fold lower than that of linezolid.

The proportion of non-penicillin-susceptible S. pneumoniae has remained around 80% since the early 1990s in Korea (2). In this study, the MIC range of DA-7867 for pneumococci, most of which were nonsusceptible to penicillin G or cefotaxime, was ≤0.008 to 0.12 μg/ml and the MIC90 of DA-7867 was 32-fold lower than that of linezolid (Table 1). All isolates of S. pyogenes and S. agalactiae were inhibited by DA-7867 at ≤0.12 μg/ml. All of these isolates were susceptible to penicillin G, but the MIC90 of penicillin G was at least eightfold higher for S. agalactiae than for S. pyogenes. Similar results were reported previously (10). S. agalactiae strains with reduced susceptibility to penicillin G and cefotaxime have also been reported in Japan (12).

A high prevalence of β-lactamase-producing strains of M. catarrhalis and H. influenzae has been reported in Korea (8, 19). The MIC ranges of DA-7867 for M. catarrhalis and H. influenzae were 0.25 to 8 and 0.25 to 4 μg/ml, respectively, and the MIC90s of DA-7867 for these organisms were four- and eightfold lower than those of linezolid. It is interesting that most of the M. catarrhalis isolates tested were interpreted to be susceptible to DA-7867, while linezolid was reported to be only moderately potent (11).

Soft-tissue and intraabdominal-cavity infections are often due to multiple organisms, including aerobic and anaerobic bacteria. All of the peptostreptococci and anaerobic gram-positive bacilli were inhibited by DA-7867 at ≤2 μg/ml, and the MIC90 for peptostreptococci was 16-fold lower than that of linezolid (Table 1). One of the favorable characteristics of an antimicrobial agent is that it does not disturb intestinal flora (15). The MIC90s of DA-7867, 1 to 4 μg/ml, for anaerobic gram-negative bacilli were slightly lower than those of linezolid, 4 to 8 μg/ml. This suggests that DA-7867 and linezolid have similar effects on intestinal flora. Moreover, the higher activity of DA-7867 than linezolid against Clostridium difficile suggests that the use of this drug may not result in overgrowth of this organism in the intestine.

In conclusion, we found that DA-7867 is more potent than linezolid in vitro against aerobic and anaerobic gram-positive bacteria, including multidrug-resistant bacteria. No cross-resistances with oxacillin in staphylococci and with vancomycin in enterococci were observed. Further studies are warranted to determine the feasibility of developing DA-7867 as a therapeutic agent.

Acknowledgments

This study was supported by a grant from the Korea Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea (01-PJ1-PG4-01PT01-0005).

REFERENCES

  • 1.Anderegg, T. R., D. J. Biedenbach, and R. N. Jones. 2002. In vitro evaluation of AZD2563, a novel oxazolidinone, against 603 recent staphylococcal isolates. Antimicrob. Agents Chemother. 46:2662-2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Chong, Y., K. Lee, O. H. Kwon, and J. Henrichsen. 1995. Capsular types and antimicrobial resistance of Streptococcus pneumoniae isolated in Korea. Eur. J. Clin. Microbiol. Infect. Dis. 14:528-531. [DOI] [PubMed] [Google Scholar]
  • 3.Diekema, D. J., and R. N. Jones. 2001. Oxazolidinone antibiotics. Lancet 358:1975-1983. [DOI] [PubMed] [Google Scholar]
  • 4.Ednie, L. M., M. R. Jacobs, and P. C. Appelbaum. 2002. Anti-anaerobic activity of AZD2563, a new oxazolidinone, compared with eight other agents. J. Antimicrob. Chemother. 50:101-105. [DOI] [PubMed] [Google Scholar]
  • 5.Eliopoulos, G. M., C. B. Wennersten, and R. C. Moellering, Jr. 2002. In vitro activity of the new oxazolidinone AZD2563 against enterococci. Antimicrob. Agents Chemother. 46:3273-3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fluit, A. C., F. J. Schmitz, J. Verhoef, and D. Milatovic. 2002. In vitro activity of AZD2563, a novel oxazolidinone, against European gram-positive cocci. J. Antimicrob. Chemother. 50:271-276. [DOI] [PubMed] [Google Scholar]
  • 7.Jacqueline, C., J. Caillon, V. Le Mabecque, A. F. Miegeville, P. Y. Donnio, D. Bugnon, and G. Potel. 2003. In vitro activity of linezolid alone and in combination with gentamicin, vancomycin or rifampicin against methicillin-resistant Staphylococcus aureus by time-kill curve methods. J. Antimicrob. Chemother. 51:857-864. [DOI] [PubMed] [Google Scholar]
  • 8.Johnson, A. P., M. Warner, and D. M. Livermore. 2000. Activity of linezolid against multi-resistant gram-positive bacteria from diverse hospitals in the United Kingdom. J. Antimicrob. Chemother. 45:225-230. [DOI] [PubMed] [Google Scholar]
  • 9.Lee, K., C. H. Chang, N. Y. Lee, H. S. Kim, K. S. Hong, and H. C. Cho. 2000. Korean nationwide surveillance of antimicrobial resistance in 1998. Yonsei Med. J. 41:497-506. [DOI] [PubMed] [Google Scholar]
  • 10.Lee, K., J. W. Shin, and Y. Chong. 2000. Trends in serotypes and antimicrobial susceptibility of group B streptococci isolates in Korea. J. Infect. Chemother. 6:93-97. [DOI] [PubMed] [Google Scholar]
  • 11.Livermore, D. M. 2003. Linezolid in vitro: mechanism and antibacterial spectrum. J. Antimicrob. Chemother. 51(Suppl. 2):9-16. [DOI] [PubMed] [Google Scholar]
  • 12.Morikawa, Y., M. Kitazato, C. Katsukawa, and A. Tamaru. 2003. Prevalence of cefotaxime resistance in group B streptococcus isolate from Osaka, Japan. J. Infect. Chemother. 9:131-133. [DOI] [PubMed] [Google Scholar]
  • 13.National Committee for Clinical Laboratory Standards. 2001. Methods for antimicrobial susceptibility testing of anaerobic bacteria, 5th ed. Approved standard M11-A5. National Committee for Clinical Laboratory Standards, Wayne, Pa.
  • 14.National Committee for Clinical Laboratory Standards. 2003. Performance standards for antimicrobial susceptibility testing. Thirteenth informational supplement, M100-S13. National Committee for Clinical Laboratory Standards, Wayne, Pa.
  • 15.Nord, C. E., and C. Edlund. 1990. Impact of antimicrobial agents on human intestinal microflora. J. Chemother. 2:218-237. [DOI] [PubMed] [Google Scholar]
  • 16.Phillips, O. A., V. O. Rotimi, W. Y. Jamal, M. Shahin, and T. L. Verghese. 2003. Comparative in vitro activity of PH-027 versus linezolid and other anti-anaerobic antimicrobials against clinical isolates of Clostridium difficile and other anaerobic bacteria. J. Chemother. 15:113-117. [DOI] [PubMed] [Google Scholar]
  • 17.Shin, J. W., D. Yong, M. S. Kim, K. H. Chang, K. Lee, J. M. Kim, and Y. Chong. 2003. Sudden increase of vancomycin-resistant enterococcal infections in a Korean tertiary care hospital: possible consequences of increased use of oral vancomycin. J. Infect. Chemother. 9:62-67. [DOI] [PubMed] [Google Scholar]
  • 18.Sweeney, M. T., and G. E. Zurenko. 2003. In vitro activities of linezolid combined with other antimicrobial agents against staphylococci, enterococci, pneumococci, and selected gram-negative organisms. Antimicrob. Agents Chemother. 47:1902-1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Yong, D., H. J. Cheong, Y. S. Kim, Y. J. Park, W. J. Kim, J. H. Woo, K. Lee, M. W. Kang, and Y. S. Choo. 2002. In vitro activity of gemifloxacin against recent clinical isolates of bacteria in Korea. J. Korean Med. Sci. 17:737-742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Zurenko, G. E., B. H. Yagi, R. D. Schaadt, J. W. Allison, J. O. Kilbyrn, S. E. Glickman, D. K. Hutchinson, M. R. Barbachyn, and S. J. Brickner. 1996. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother. 40:839-845. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES