Abstract
Oligodeoxynucleoside methylphosphonates were synthesized using methylphosphonamidite monomers incorporating the base labile tert-butylphenoxyacetyl (t-BPA) protecting group on the exocyclic amines of dA, dC, and dG. Synthesis of the oligodeoxynucleoside methylphosphonates required only a small change in oxidation solution from standard DNA synthesis. The increased lability of the t-BPA group over the standard benzoyl and isobutyryl protection permitted the use of milder basic deprotection conditions. Deprotection of the nucleoside bases and release from support was best accomplished by a short treatment with ammonia saturated methanol. This procedure resulted in minimal backgone degradation with no base modifications. Analysis of the resultant oligodeoxynucleoside methylphosphonates by reverse phase HPLC and MALDI-TOF mass spectroscopy are described.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cohen J. S. Antisense oligodeoxynucleotides as antiviral agents. Antiviral Res. 1991 Sep;16(2):121–133. doi: 10.1016/0166-3542(91)90019-n. [DOI] [PubMed] [Google Scholar]
- Eadie J. S., Davidson D. S. Guanine modification during chemical DNA synthesis. Nucleic Acids Res. 1987 Oct 26;15(20):8333–8349. doi: 10.1093/nar/15.20.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giles R. V., Tidd D. M. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res. 1992 Feb 25;20(4):763–770. doi: 10.1093/nar/20.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogrefe R. I., Reynolds M. A., Vaghefi M. M., Young K. M., Riley T. A., Klem R. E., Arnold L. J., Jr An improved method for the synthesis and deprotection of methylphosphonate oligonucleotides. Methods Mol Biol. 1993;20:143–164. doi: 10.1385/0-89603-281-7:143. [DOI] [PubMed] [Google Scholar]
- Hogrefe R. I., Vaghefi M. M., Reynolds M. A., Young K. M., Arnold L. J., Jr Deprotection of methylphosphonate oligonucleotides using a novel one-pot procedure. Nucleic Acids Res. 1993 May 11;21(9):2031–2038. doi: 10.1093/nar/21.9.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuijpers W. H., Kuyl-Yeheskiely E., van Boom J. H., van Boeckel C. A. The application of the AMB protective group in the solid-phase synthesis of methylphosphonate DNA analogues. Nucleic Acids Res. 1993 Jul 25;21(15):3493–3500. doi: 10.1093/nar/21.15.3493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larrouy B., Blonski C., Boiziau C., Stuer M., Moreau S., Shire D., Toulmé J. J. RNase H-mediated inhibition of translation by antisense oligodeoxyribonucleotides: use of backbone modification to improve specificity. Gene. 1992 Nov 16;121(2):189–194. doi: 10.1016/0378-1119(92)90121-5. [DOI] [PubMed] [Google Scholar]
- Maher L. J., 3rd, Dolnick B. J. Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system. Nucleic Acids Res. 1988 Apr 25;16(8):3341–3358. doi: 10.1093/nar/16.8.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller P. S., Agris C. H., Murakami A., Reddy P. M., Spitz S. A., Ts'o P. O. Preparation of oligodeoxyribonucleoside methylphosphonates on a polystyrene support. Nucleic Acids Res. 1983 Sep 24;11(18):6225–6242. doi: 10.1093/nar/11.18.6225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller P. S., McParland K. B., Jayaraman K., Ts'o P. O. Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry. 1981 Mar 31;20(7):1874–1880. doi: 10.1021/bi00510a024. [DOI] [PubMed] [Google Scholar]
- Miller P. S., Reddy M. P., Murakami A., Blake K. R., Lin S. B., Agris C. H. Solid-phase syntheses of oligodeoxyribonucleoside methylphosphonates. Biochemistry. 1986 Sep 9;25(18):5092–5097. doi: 10.1021/bi00366a017. [DOI] [PubMed] [Google Scholar]
- Miller P. S., Yano J., Yano E., Carroll C., Jayaraman K., Ts'o P. O. Nonionic nucleic acid analogues. Synthesis and characterization of dideoxyribonucleoside methylphosphonates. Biochemistry. 1979 Nov 13;18(23):5134–5143. doi: 10.1021/bi00590a017. [DOI] [PubMed] [Google Scholar]
- Pieles U., Zürcher W., Schär M., Moser H. E. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 1993 Jul 11;21(14):3191–3196. doi: 10.1093/nar/21.14.3191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polushin N. N., Morocho A. M., Chen B. C., Cohen J. S. On the rapid deprotection of synthetic oligonucleotides and analogs. Nucleic Acids Res. 1994 Feb 25;22(4):639–645. doi: 10.1093/nar/22.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha N. D., Davis P., Usman N., Pérez J., Hodge R., Kremsky J., Casale R. Labile exocyclic amine protection of nucleosides in DNA, RNA and oligonucleotide analog synthesis facilitating N-deacylation, minimizing depurination and chain degradation. Biochimie. 1993;75(1-2):13–23. doi: 10.1016/0300-9084(93)90019-o. [DOI] [PubMed] [Google Scholar]
