Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Jan 11;20(1):69–74. doi: 10.1093/nar/20.1.69

Identification of the template binding polypeptide in the pea chloroplast transcriptional complex.

N C Khanna 1, S Lakhani 1, K K Tewari 1
PMCID: PMC310327  PMID: 1738606

Abstract

We have identified the template-binding polypeptide in the pea chloroplast transcriptional complex by photoaffinity labelling. This polypeptide has an apparent molecular weight of about 150 kDa and binds to both, chloroplast ribosomal (16S rRNA) and messenger (psbA) promoters. The 16S rRNA and psbA promoters were amplified from chloroplast DNA by the polymerase chain reaction and labelled with a photoactive analogue of TTP, 5-bromodeoxy UTP, as well as with alpha-32P-dCTP. Using the filter-binding assay, the conditions for binding of the RNA polymerase complex to chloroplast promoters were optimized. The polypeptide directly interacting with the template was photo-crosslinked to it and resolved by denaturing gel electrophoresis. The photoaffinity labelling of the 150 kDa polypeptide was dependent on photoactivation by UV irradiation, and the presence of chloroplast promoters. Competition experiments showed that the protein formed a strong interaction with the plastid promoters which could not be displaced by lambda-phage DNA or synthetic polynucleotides. The photo-crosslinked and nuclease-treated promoter-polypeptide complex was resistant to further digestion with DNase and RNase, but could be hydrolyzed by Proteinase K. Binding of the promoters by the 150 kDa polypeptide could not be surpressed by transcription inhibitors like rifampicin and alpha-amanitin. However, heparin (0.001%) inhibited the formation of the enzyme-promoter complex, and interfered with the photoaffinity labelling of the 150 kDa polypeptide. The extent of photoaffinity labelling of 150 kDa polypeptide exhibits some degree of correlation to total transcriptional activity under various salt concentrations. The results demonstrate that the 150 kDa polypeptide is a functional template binding polypeptide of the pea chloroplast transcription complex.

Full text

PDF
69

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apel K., Bogorad L. Light-induced increase in the activity of maize plastid DNA-dependent RNA polymerase. Eur J Biochem. 1976 Aug 16;67(2):615–620. doi: 10.1111/j.1432-1033.1976.tb10727.x. [DOI] [PubMed] [Google Scholar]
  2. Armaleo D., Gross S. R. Purification of the three nuclear RNA polymerases from Neurospora crassa. J Biol Chem. 1985 Dec 25;260(30):16169–16173. [PubMed] [Google Scholar]
  3. Armaleo D., Gross S. R. Structural studies on Neurospora RNA polymerases and associated proteins. J Biol Chem. 1985 Dec 25;260(30):16174–16180. [PubMed] [Google Scholar]
  4. Bottomley W., Smith H. J., Bogorad L. RNA polymerases of maize: partial purification and properties of the chloroplast enzyme. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2412–2416. doi: 10.1073/pnas.68.10.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chamberlin M. J. The selectivity of transcription. Annu Rev Biochem. 1974;43(0):721–775. doi: 10.1146/annurev.bi.43.070174.003445. [DOI] [PubMed] [Google Scholar]
  6. Gruissem W., Greenberg B. M., Zurawski G., Prescott D. M., Hallick R. B. Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Cell. 1983 Dec;35(3 Pt 2):815–828. doi: 10.1016/0092-8674(83)90114-9. [DOI] [PubMed] [Google Scholar]
  7. Hallick R. B., Lipper C., Richards O. C., Rutter W. J. Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochemistry. 1976 Jul 13;15(14):3039–3045. doi: 10.1021/bi00659a016. [DOI] [PubMed] [Google Scholar]
  8. Hillel Z., Wu C. W. Photochemical cross-linking studies on the interaction of Escherichia coli RNA polymerase with T7 DNA. Biochemistry. 1978 Jul 25;17(15):2954–2961. doi: 10.1021/bi00608a003. [DOI] [PubMed] [Google Scholar]
  9. Hinkle D. C., Chamberlin M. J. Studies of the binding of Escherichia coli RNA polymerase to DNA. II. The kinetics of the binding reaction. J Mol Biol. 1972 Sep 28;70(2):187–195. doi: 10.1016/0022-2836(72)90532-3. [DOI] [PubMed] [Google Scholar]
  10. Hu J., Bogorad L. Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1531–1535. doi: 10.1073/pnas.87.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khanna N. C., Lakhani S., Tewari K. K. Photoaffinity labelling of the pea chloroplast transcriptional complex by nascent RNA in vitro. Nucleic Acids Res. 1991 Sep 25;19(18):4849–4855. doi: 10.1093/nar/19.18.4849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kidd G. H., Bogorad L. A facile procedure for purifying maize chloroplast RNA polymerase from whole cell homogenates. Biochim Biophys Acta. 1980 Aug 26;609(1):14–30. doi: 10.1016/0005-2787(80)90197-5. [DOI] [PubMed] [Google Scholar]
  13. Link G. DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro system from mustard (Sinapis alba L.). EMBO J. 1984 Aug;3(8):1697–1704. doi: 10.1002/j.1460-2075.1984.tb02034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oishi K. K., Shapiro D. R., Tewari K. K. Sequence organization of a pea chloroplast DNA gene coding for a 34,500-dalton protein. Mol Cell Biol. 1984 Nov;4(11):2556–2563. doi: 10.1128/mcb.4.11.2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Polya G. M., Jagendorf A. T. Wheat leaf RNA polymerases. I. Partial purification and characterization of nuclear, chloroplast and soluble DNA-dependent enzymes. Arch Biochem Biophys. 1971 Oct;146(2):635–648. doi: 10.1016/0003-9861(71)90172-x. [DOI] [PubMed] [Google Scholar]
  16. Rajasekhar V. K., Sun E., Meeker R., Wu B. W., Tewari K. K. Highly purified pea chloroplast RNA polymerase transcribes both rRNA and mRNA genes. Eur J Biochem. 1991 Jan 1;195(1):215–228. doi: 10.1111/j.1432-1033.1991.tb15697.x. [DOI] [PubMed] [Google Scholar]
  17. Renart M. F., Sastre L., Díaz V., Sebastián J. Purification and subunit structure of RNA polymerases I and II from Dictyostelium discoideum vegetative cells. Mol Cell Biochem. 1985 Feb;66(1):21–29. doi: 10.1007/BF00231819. [DOI] [PubMed] [Google Scholar]
  18. Roberge M., Bradbury E. M. RNA contacts the two large polymerase subunits and a 52-kDa polypeptide in nucleolar RNA polymerase I transcribing complexes. J Biol Chem. 1988 Dec 5;263(34):18553–18557. [PubMed] [Google Scholar]
  19. Sawadogo M., Sentenac A. RNA polymerase B (II) and general transcription factors. Annu Rev Biochem. 1990;59:711–754. doi: 10.1146/annurev.bi.59.070190.003431. [DOI] [PubMed] [Google Scholar]
  20. Simpson R. B. The molecular topography of RNA polymerase-promoter interaction. Cell. 1979 Oct;18(2):277–285. doi: 10.1016/0092-8674(79)90047-3. [DOI] [PubMed] [Google Scholar]
  21. Strauss H. S., Burgess R. R., Record M. T., Jr Binding of Escherichia coli ribonucleic acid polymerase holoenzyme to a bacteriophage T7 promoter-containing fragment: evaluation of promoter binding constants as a function of solution conditions. Biochemistry. 1980 Jul 22;19(15):3504–3515. doi: 10.1021/bi00556a015. [DOI] [PubMed] [Google Scholar]
  22. Sun E., Wu B. W., Tewari K. K. In vitro analysis of the pea chloroplast 16S rRNA gene promoter. Mol Cell Biol. 1989 Dec;9(12):5650–5659. doi: 10.1128/mcb.9.12.5650. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES