Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Jan 11;20(1):75–81. doi: 10.1093/nar/20.1.75

Processing of chimeric introns in dicot plants: evidence for a close cooperation between 5' and 3' splice sites.

E Waigmann 1, A Barta 1
PMCID: PMC310328  PMID: 1738607

Abstract

Splice sites of vertebrate introns are generally not recognized in plant cells. Several lines of evidences have led to the proposal that the mechanism of 3' splice site selection differs in plants and animals (K. Wiebauer, J.J. Herrero, and W. Filipowicz, Mol. Cell. Biol. 8:2042-2051, 1988). To gain a better insight into the mechanistic differences between plant and animal splicing, we constructed chimeric introns consisting partly of dicotyledonous plant and partly of animal intron sequences. Splicing of these chimeric introns was analyzed in transiently transfected tobacco protoplasts. The results show that there are no principal sequence or structural differences between the 3' splice regions of plants and animals. Furthermore, evidence is provided that cooperation between 5' and 3' splice sites takes place and influences their mutual selection.

Full text

PDF
75

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Kiss T., Solymosy F. Molecular analysis of eight U1 RNA gene candidates from tomato that could potentially be transcribed into U1 RNA sequence variants differing from each other in similar regions of secondary structure. Nucleic Acids Res. 1989 Aug 11;17(15):6319–6337. doi: 10.1093/nar/17.15.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown J. W. A catalogue of splice junction and putative branch point sequences from plant introns. Nucleic Acids Res. 1986 Dec 22;14(24):9549–9559. doi: 10.1093/nar/14.24.9549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. W., Feix G., Frendewey D. Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. EMBO J. 1986 Nov;5(11):2749–2758. doi: 10.1002/j.1460-2075.1986.tb04563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown J. W., Waugh R. Maize U2 snRNAs: gene sequence and expression. Nucleic Acids Res. 1989 Nov 25;17(22):8991–9001. doi: 10.1093/nar/17.22.8991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Filipowicz W., Kiss T., Marshallsay C., Waibel F. U-snRNA genes, U-snRNAs and U-snRNPs of higher plants. Mol Biol Rep. 1990;14(2-3):125–129. doi: 10.1007/BF00360443. [DOI] [PubMed] [Google Scholar]
  7. Gallego M. E., Nadal-Ginard B. Myosin light-chain 1/3 gene alternative splicing: cis regulation is based upon a hierarchical compatibility between splice sites. Mol Cell Biol. 1990 May;10(5):2133–2144. doi: 10.1128/mcb.10.5.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodall G. J., Filipowicz W. Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J. 1991 Sep;10(9):2635–2644. doi: 10.1002/j.1460-2075.1991.tb07806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodall G. J., Filipowicz W. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell. 1989 Aug 11;58(3):473–483. doi: 10.1016/0092-8674(89)90428-5. [DOI] [PubMed] [Google Scholar]
  10. Green M. R. Pre-mRNA splicing. Annu Rev Genet. 1986;20:671–708. doi: 10.1146/annurev.ge.20.120186.003323. [DOI] [PubMed] [Google Scholar]
  11. Hanley B. A., Schuler M. A. Nucleotide sequence of a pea U2 snRNA gene. Nucleic Acids Res. 1989 Dec 11;17(23):10106–10106. doi: 10.1093/nar/17.23.10106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartmuth K., Barta A. In vitro processing of a plant pre-mRNA in a HeLa cell nuclear extract. Nucleic Acids Res. 1986 Oct 10;14(19):7513–7528. doi: 10.1093/nar/14.19.7513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunt A. G., Mogen B. D., Chu N. M., Chua N. H. The SV40 small t intron is accurately and efficiently spliced in tobacco cells. Plant Mol Biol. 1991 Mar;16(3):375–379. doi: 10.1007/BF00023989. [DOI] [PubMed] [Google Scholar]
  14. Keith B., Chua N. H. Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J. 1986 Oct;5(10):2419–2425. doi: 10.1002/j.1460-2075.1986.tb04516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patzelt E., Thalmann E., Hartmuth K., Blaas D., Kuechler E. Assembly of pre-mRNA splicing complex is cap dependent. Nucleic Acids Res. 1987 Feb 25;15(4):1387–1399. doi: 10.1093/nar/15.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peterhans A., Datta S. K., Datta K., Goodall G. J., Potrykus I., Paszkowski J. Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Mol Gen Genet. 1990 Jul;222(2-3):361–368. doi: 10.1007/BF00633841. [DOI] [PubMed] [Google Scholar]
  18. Pietrzak M., Shillito R. D., Hohn T., Potrykus I. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 1986 Jul 25;14(14):5857–5868. doi: 10.1093/nar/14.14.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruby S. W., Abelson J. Pre-mRNA splicing in yeast. Trends Genet. 1991 Mar;7(3):79–85. doi: 10.1016/0168-9525(91)90276-V. [DOI] [PubMed] [Google Scholar]
  20. Sharp P. A. Splicing of messenger RNA precursors. Science. 1987 Feb 13;235(4790):766–771. doi: 10.1126/science.3544217. [DOI] [PubMed] [Google Scholar]
  21. Streuli M., Saito H. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 1989 Mar;8(3):787–796. doi: 10.1002/j.1460-2075.1989.tb03439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tanaka A., Mita S., Ohta S., Kyozuka J., Shimamoto K., Nakamura K. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res. 1990 Dec 11;18(23):6767–6770. doi: 10.1093/nar/18.23.6767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ulfendahl P. J., Kreivi J. P., Akusjärvi G. Role of the branch site/3'-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5'- and 3'-splice site co-operation. Nucleic Acids Res. 1989 Feb 11;17(3):925–938. doi: 10.1093/nar/17.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vankan P., Edoh D., Filipowicz W. Structure and expression of the U5 snRNA gene of Arabidopsis thaliana. Conserved upstream sequence elements in plant U-RNA genes. Nucleic Acids Res. 1988 Nov 25;16(22):10425–10440. doi: 10.1093/nar/16.22.10425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiebauer K., Herrero J. J., Filipowicz W. Nuclear pre-mRNA processing in plants: distinct modes of 3'-splice-site selection in plants and animals. Mol Cell Biol. 1988 May;8(5):2042–2051. doi: 10.1128/mcb.8.5.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Santen V. L., Spritz R. A. Splicing of plant pre-mRNAs in animal systems and vice versa. Gene. 1987;56(2-3):253–265. doi: 10.1016/0378-1119(87)90142-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES