Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Jan 25;20(2):263–266. doi: 10.1093/nar/20.2.263

S1 nuclease hypersensitive sites in an oligopurine/oligopyrimidine DNA from the t(10;14) breakpoint cluster region.

M Lu 1, N Zhang 1, S Raimondi 1, A D Ho 1
PMCID: PMC310364  PMID: 1741251

Abstract

Recurring chromosomal translocations are frequently seen in cancers, especially in leukemias and lymphomas. The genes affected by these chromosomal translocations appear to play an important role in oncogenesis. The mechanism underlying the formation of chromosomal translocation is a subject under extensive study. In chromosomal translocations involving the Ig and TCR loci, complete heptamer-spacer-nonamer signal motifs are usually present at the break of the Ig and TCR genes, indicating the involvement of V-D-J recombinase(s). On the other hand, in only about 50% of the cases signal motif sequences have been found at the break in the other participating chromosome, suggesting that different mechanisms may be involved in the scission of the corresponding chromosome. Here we report the identification of an oligopurine/oligopyrimidine DNA in the t(10;14) breakpoint cluster region associated with T-cell acute lymphoblastic leukemia. S1 nuclease mapping revealed multiple S1 hypersensitive sites in the oligopurine/oligopyrimidine DNA. These data suggest a role for oligopurine/oligopyrimidine sequences (non-B DNA) in the formation of chromosomal translocation.

Full text

PDF
263

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Tsujimoto Y. Potential Z-DNA elements surround the breakpoints of chromosome translocation within the 5' flanking region of bcl-2 gene. Oncogene. 1990 Nov;5(11):1653–1657. [PubMed] [Google Scholar]
  2. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  3. Boehm T., Mengle-Gaw L., Kees U. R., Spurr N., Lavenir I., Forster A., Rabbitts T. H. Alternating purine-pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours. EMBO J. 1989 Sep;8(9):2621–2631. doi: 10.1002/j.1460-2075.1989.tb08402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collier D. A., Griffin J. A., Wells R. D. Non-B right-handed DNA conformations of homopurine.homopyrimidine sequences in the murine immunoglobulin C alpha switch region. J Biol Chem. 1988 May 25;263(15):7397–7405. [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Fowler R. F., Skinner D. M. Eukaryotic DNA diverges at a long and complex pyrimidine.purine tract that can adopt altered conformations. J Biol Chem. 1986 Jul 5;261(19):8994–9001. [PubMed] [Google Scholar]
  7. Hatano M., Roberts C. W., Minden M., Crist W. M., Korsmeyer S. J. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science. 1991 Jul 5;253(5015):79–82. doi: 10.1126/science.1676542. [DOI] [PubMed] [Google Scholar]
  8. Hentschel C. C. Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature. 1982 Feb 25;295(5851):714–716. doi: 10.1038/295714a0. [DOI] [PubMed] [Google Scholar]
  9. Kagan J., Finger L. R., Letofsky J., Finan J., Nowell P. C., Croce C. M. Clustering of breakpoints on chromosome 10 in acute T-cell leukemias with the t(10;14) chromosome translocation. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4161–4165. doi: 10.1073/pnas.86.11.4161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lu M. Construction of representative genomic DNA libraries using one microgram of DNA. Nucleic Acids Res. 1989 Jan 25;17(2):818–818. doi: 10.1093/nar/17.2.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lu M., Dubé I., Raimondi S., Carroll A., Zhao Y., Minden M., Sutherland P. Molecular characterization of the t(10;14) translocation breakpoints in T-cell acute lymphoblastic leukemia: further evidence for illegitimate physiological recombination. Genes Chromosomes Cancer. 1990 Sep;2(3):217–222. doi: 10.1002/gcc.2870020309. [DOI] [PubMed] [Google Scholar]
  12. Lu M., Gong Z. Y., Shen W. F., Ho A. D. The tcl-3 proto-oncogene altered by chromosomal translocation in T-cell leukemia codes for a homeobox protein. EMBO J. 1991 Oct;10(10):2905–2910. doi: 10.1002/j.1460-2075.1991.tb07840.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCarthy J. G., Heywood S. M. A long polypyrimidine/polypurine tract induces an altered DNA conformation on the 3' coding region of the adjacent myosin heavy chain gene. Nucleic Acids Res. 1987 Oct 12;15(19):8069–8085. doi: 10.1093/nar/15.19.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peterson R. C., Cheung L. C., Mattaliano R. J., Chang L. M., Bollum F. J. Molecular cloning of human terminal deoxynucleotidyltransferase. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4363–4367. doi: 10.1073/pnas.81.14.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Raimondi S. C., Behm F. G., Roberson P. K., Pui C. H., Rivera G. K., Murphy S. B., Williams D. L. Cytogenetics of childhood T-cell leukemia. Blood. 1988 Nov;72(5):1560–1566. [PubMed] [Google Scholar]
  16. Rowley J. D. Identification of the constant chromosome regions involved in human hematologic malignant disease. Science. 1982 May 14;216(4547):749–751. doi: 10.1126/science.7079737. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shen C. K. Superhelicity induces hypersensitivity of a human polypyrimidine . polypurine DNA sequence in the human alpha 2-alpha 1 globin intergenic region to S1 nuclease digestion--high resolution mapping of the clustered cleavage sites. Nucleic Acids Res. 1983 Nov 25;11(22):7899–7910. doi: 10.1093/nar/11.22.7899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang J. C., Giaever G. N. Action at a distance along a DNA. Science. 1988 Apr 15;240(4850):300–304. doi: 10.1126/science.3281259. [DOI] [PubMed] [Google Scholar]
  20. Weinreb A., Katzenberg D. R., Gilmore G. L., Birshtein B. K. Site of unequal sister chromatid exchange contains a potential Z-DNA-forming tract. Proc Natl Acad Sci U S A. 1988 Jan;85(2):529–533. doi: 10.1073/pnas.85.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wells R. D., Collier D. A., Hanvey J. C., Shimizu M., Wohlrab F. The chemistry and biology of unusual DNA structures adopted by oligopurine.oligopyrimidine sequences. FASEB J. 1988 Nov;2(14):2939–2949. [PubMed] [Google Scholar]
  22. Wohlrab F., McLean M. J., Wells R. D. The segment inversion site of herpes simplex virus type 1 adopts a novel DNA structure. J Biol Chem. 1987 May 5;262(13):6407–6416. [PubMed] [Google Scholar]
  23. Zutter M., Hockett R. D., Roberts C. W., McGuire E. A., Bloomstone J., Morton C. C., Deaven L. L., Crist W. M., Carroll A. J., Korsmeyer S. J. The t(10;14)(q24;q11) of T-cell acute lymphoblastic leukemia juxtaposes the delta T-cell receptor with TCL3, a conserved and activated locus at 10q24. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3161–3165. doi: 10.1073/pnas.87.8.3161. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES