Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Dec 25;21(25):6028–6037. doi: 10.1093/nar/21.25.6028

The relationship between mutation rates for the (C-G)-->(T-A) transition and features of T-G mispair structures in different neighbor environments, determined by free energy molecular mechanics.

R Mitra 1, B M Pettitt 1, G L Ramé 1, R D Blake 1
PMCID: PMC310490  PMID: 8290365

Abstract

The results of this theoretical study combining sequence analysis and minimization with integral equation liquid structural methods indicate that the local sequence context of a T-G wobble mismatch influences the local conformation of the helix, and that conformational alterations are correlated with mutational activity. Studies on the mismatch in four different 5' and 3' neighbor contexts indicate that the nature of the 5' base to the thymine of the mispair is probably the single most critical factor in determining the structural features that facilitate or discourage mutations. When cytosine is the 5' neighbor, the helix adopts a mostly BII conformation, whereas a 5' guanine preserves the canonical BI. Structures that vary little from the BI structure on the incorporation of the mismatch have sequences that correspond to lower rates of transition, whereas those with mostly BII conformations, have sequences with high mutation rates. Subtle variations in stacking patterns around the mismatch precipitate a structural Domino-effect, with a variety of changes in conformation. The helix opens at the mismatch with increased roll angle and propeller twist, causing the thymine to migrate into the major groove and the guanine into the minor groove, exposing the heteroatomic groups to the solvent in the major and minor grooves, respectively, and allowing for some unusual hydrogen bonds. These alterations show a tentative correlation with mutation rates, implying that stacking and structure around the mismatch are important features in the discrimination by proofreading activities of canonical W-C and wobble mismatch base pairs during replication-repair. Variations in the C1'-C1' distances, high propeller twists, changes in the electrostatic complementarity leading to unusual hydrogen bonding patterns probably all correlate with detectability.

Full text

PDF
6028

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. F., Record M. T., Jr Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annu Rev Biophys Biophys Chem. 1990;19:423–465. doi: 10.1146/annurev.bb.19.060190.002231. [DOI] [PubMed] [Google Scholar]
  2. Arnott S., Hukins D. W. Optimised parameters for A-DNA and B-DNA. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504–1509. doi: 10.1016/0006-291X(72)90243-4. [DOI] [PubMed] [Google Scholar]
  3. Benevides J. M., Wang A. H., van der Marel G. A., van Boom J. H., Thomas G. J., Jr Effect of the G.T mismatch on backbone and sugar conformations of Z-DNA and B-DNA: analysis by Raman spectroscopy of crystal and solution structures of d(CGCGTG) and d(CGCGCG). Biochemistry. 1989 Jan 10;28(1):304–310. doi: 10.1021/bi00427a041. [DOI] [PubMed] [Google Scholar]
  4. Blake R. D., Hess S. T., Nicholson-Tuell J. The influence of nearest neighbors on the rate and pattern of spontaneous point mutations. J Mol Evol. 1992 Mar;34(3):189–200. doi: 10.1007/BF00162968. [DOI] [PubMed] [Google Scholar]
  5. Calladine C. R., Drew H. R. Principles of sequence-dependent flexure of DNA. J Mol Biol. 1986 Dec 20;192(4):907–918. doi: 10.1016/0022-2836(86)90036-7. [DOI] [PubMed] [Google Scholar]
  6. Carbonnaux C., Fazakerley G. V., Sowers L. C. An NMR structural study of deaminated base pairs in DNA. Nucleic Acids Res. 1990 Jul 25;18(14):4075–4081. doi: 10.1093/nar/18.14.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coll M., Frederick C. A., Wang A. H., Rich A. A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8385–8389. doi: 10.1073/pnas.84.23.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DONOHUE J., TRUEBLOOD K. N. Base pairing in DNA. J Mol Biol. 1960 Dec;2:363–371. doi: 10.1016/s0022-2836(60)80047-2. [DOI] [PubMed] [Google Scholar]
  9. Delcourt S. G., Blake R. D. Stacking energies in DNA. J Biol Chem. 1991 Aug 15;266(23):15160–15169. [PubMed] [Google Scholar]
  10. Donohue J. HYDROGEN-BONDED HELICAL CONFIGURATIONS OF POLYNUCLEOTIDES. Proc Natl Acad Sci U S A. 1956 Feb;42(2):60–65. doi: 10.1073/pnas.42.2.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drake J. W. Spontaneous mutation. Annu Rev Genet. 1991;25:125–146. doi: 10.1146/annurev.ge.25.120191.001013. [DOI] [PubMed] [Google Scholar]
  12. Echols H., Goodman M. F. Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991;60:477–511. doi: 10.1146/annurev.bi.60.070191.002401. [DOI] [PubMed] [Google Scholar]
  13. Fratini A. V., Kopka M. L., Drew H. R., Dickerson R. E. Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. J Biol Chem. 1982 Dec 25;257(24):14686–14707. [PubMed] [Google Scholar]
  14. Gorenstein D. G., Schroeder S. A., Fu J. M., Metz J. T., Roongta V., Jones C. R. Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids. Biochemistry. 1988 Sep 20;27(19):7223–7237. doi: 10.1021/bi00419a009. [DOI] [PubMed] [Google Scholar]
  15. Hunter W. N., Brown T., Kneale G., Anand N. N., Rabinovich D., Kennard O. The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution. J Biol Chem. 1987 Jul 25;262(21):9962–9970. doi: 10.2210/pdb113d/pdb. [DOI] [PubMed] [Google Scholar]
  16. Loeb L. A., Kunkel T. A. Fidelity of DNA synthesis. Annu Rev Biochem. 1982;51:429–457. doi: 10.1146/annurev.bi.51.070182.002241. [DOI] [PubMed] [Google Scholar]
  17. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  18. Modrich P. DNA mismatch correction. Annu Rev Biochem. 1987;56:435–466. doi: 10.1146/annurev.bi.56.070187.002251. [DOI] [PubMed] [Google Scholar]
  19. Nelson H. C., Finch J. T., Luisi B. F., Klug A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature. 1987 Nov 19;330(6145):221–226. doi: 10.1038/330221a0. [DOI] [PubMed] [Google Scholar]
  20. Patel D. J., Kozlowski S. A., Marky L. A., Rice J. A., Broka C., Dallas J., Itakura K., Breslauer K. J. Structure, dynamics, and energetics of deoxyguanosine . thymidine wobble base pair formation in the self-complementary d(CGTGAATTCGCG) duplex in solution. Biochemistry. 1982 Feb 2;21(3):437–444. doi: 10.1021/bi00532a003. [DOI] [PubMed] [Google Scholar]
  21. Poltev V. I., Bruskov V. I. On molecular mechanisms of nucleic acid synthesis fidelity aspects. 1. Contribution of base interactions. J Theor Biol. 1978 Jan 7;70(1):69–83. doi: 10.1016/0022-5193(78)90303-x. [DOI] [PubMed] [Google Scholar]
  22. Radman M., Wagner R. Mismatch repair in Escherichia coli. Annu Rev Genet. 1986;20:523–538. doi: 10.1146/annurev.ge.20.120186.002515. [DOI] [PubMed] [Google Scholar]
  23. Roongta V. A., Jones C. R., Gorenstein D. G. Effect of distortions in the deoxyribose phosphate backbone conformation of duplex oligodeoxyribonucleotide dodecamers containing GT, GG, GA, AC, and GU base-pair mismatches on 31P NMR spectra. Biochemistry. 1990 Jun 5;29(22):5245–5258. doi: 10.1021/bi00474a005. [DOI] [PubMed] [Google Scholar]
  24. Shibata M., Zielinski T. J., Rein R. A molecular dynamics study of the effect of G.T mispairs on the conformation of DNA in solution. Biopolymers. 1991 Feb 5;31(2):211–232. doi: 10.1002/bip.360310209. [DOI] [PubMed] [Google Scholar]
  25. Topal M. D., Fresco J. R. Base pairing and fidelity in codon-anticodon interaction. Nature. 1976 Sep 23;263(5575):289–293. doi: 10.1038/263289a0. [DOI] [PubMed] [Google Scholar]
  26. Tung C. S., Harvey S. C. Base sequence, local helix structure, and macroscopic curvature of A-DNA and B-DNA. J Biol Chem. 1986 Mar 15;261(8):3700–3709. [PubMed] [Google Scholar]
  27. Van Vlijmen H. W., Ramé G. L., Pettitt B. M. A study of model energetics and conformational properties of polynucleotide triplexes. Biopolymers. 1990;30(5-6):517–532. doi: 10.1002/bip.360300505. [DOI] [PubMed] [Google Scholar]
  28. Venable R. M., Widmalm G., Brooks B. R., Egan W., Pastor R. W. Conformational states of a TT mismatch from molecular dynamics simulation of duplex d (CGCGATTCGCG). Biopolymers. 1992 Jul;32(7):783–794. doi: 10.1002/bip.360320707. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES