Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Nov 25;21(23):5431–5438. doi: 10.1093/nar/21.23.5431

Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma brucei.

T E Allen 1, B Ullman 1
PMCID: PMC310582  PMID: 8265360

Abstract

The hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme of Trypanosoma brucei and related parasites provides a rational target for the treatment of African sleeping sickness and several other parasitic diseases. To characterize the T. brucei HGPRT enzyme in detail, the T. brucei hgprt was isolated within a 4.2 kb SalI-KpnI genomic insert and sequenced. Nucleotide sequence analysis revealed an open reading frame of 630 bp that encoded a protein of 210 amino acids with a M(r) = 23.4 kd. After gap alignment, the T. brucei HGPRT exhibited 21-23% amino acid sequence identity, mostly in three clustered regions, with the HGPRTs from human, S. mansoni, and P falciparum, indicating that the trypanosome enzyme was the most divergent of the group. Surprisingly, the T. brucei HGPRT was more homologous to the hypoxanthine phosphoribosyltransferase (HPRT) from the prokaryote V. harveyi than to the eukaryotic HGPRTs. Northern blot analysis revealed two trypanosome transcripts of 1.4 and 1.9 kb, each expressed to equivalent degrees in insect vector and mammalian forms of the parasite. The T. brucei hgprt was inserted into an expression plasmid and transformed into S phi 606 E. coli that are deficient in both HPRT and xanthine-guanine phosphoribosyltransferase activities. Soluble, enzymatically active recombinant T. brucei HGPRT was expressed to high levels and purified to homogeneity by GTP-agarose affinity chromatography. The purified recombinant enzyme recognized hypoxanthine, guanine, and allopurinol, but not xanthine or adenine, as substrates and was inhibited by a variety of nucleotide effectors. The availability of a molecular clone encoding the T. brucei hgprt and large quantities of homogeneous recombinant HGPRT enzyme provides an experimentally manipulable molecular and biochemical system for the rational design of novel therapeutic agents for the treatment of African sleeping sickness and other diseases of parasitic origin.

Full text

PDF
5431

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Aboagye-Kwarteng T., ole-MoiYoi O. K., Lonsdale-Eccles J. D. Phosphorylation differences among proteins of bloodstream developmental stages of Trypanosoma brucei brucei. Biochem J. 1991 Apr 1;275(Pt 1):7–14. doi: 10.1042/bj2750007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen T., Henschel E. V., Coons T., Cross L., Conley J., Ullman B. Purification and characterization of the adenine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase activities from Leishmania donovani. Mol Biochem Parasitol. 1989 Mar 15;33(3):273–281. doi: 10.1016/0166-6851(89)90089-3. [DOI] [PubMed] [Google Scholar]
  4. Bellofatto V., Fairlamb A. H., Henderson G. B., Cross G. A. Biochemical changes associated with alpha-difluoromethylornithine uptake and resistance in Trypanosoma brucei. Mol Biochem Parasitol. 1987 Oct;25(3):227–238. doi: 10.1016/0166-6851(87)90086-7. [DOI] [PubMed] [Google Scholar]
  5. Berens R. L., Marr J. J., LaFon S. W., Nelson D. J. Purine metabolism in Trypanosoma cruzi. Mol Biochem Parasitol. 1981 Jul;3(3):187–196. doi: 10.1016/0166-6851(81)90049-9. [DOI] [PubMed] [Google Scholar]
  6. Boonlayangoor P., Albach R. A., Booden T. Purine nucleotide synthesis in Entamoeba histolytica: a preliminary study. Arch Invest Med (Mex) 1980;11(1 Suppl):83–88. [PubMed] [Google Scholar]
  7. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  8. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  9. Craig S. P., 3rd, McKerrow J. H., Newport G. R., Wang C. C. Analysis of cDNA encoding the hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) of Schistosoma mansoni; a putative target for chemotherapy. Nucleic Acids Res. 1988 Jul 25;16(14B):7087–7101. doi: 10.1093/nar/16.14.7087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Craig S. P., 3rd, Yuan L., Kuntz D. A., McKerrow J. H., Wang C. C. High level expression in Escherichia coli of soluble, enzymatically active schistosomal hypoxanthine/guanine phosphoribosyltransferase and trypanosomal ornithine decarboxylase. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2500–2504. doi: 10.1073/pnas.88.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dush M. K., Sikela J. M., Khan S. A., Tischfield J. A., Stambrook P. J. Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc Natl Acad Sci U S A. 1985 May;82(9):2731–2735. doi: 10.1073/pnas.82.9.2731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eells J. T., Spector R. Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem Res. 1983 Nov;8(11):1451–1457. doi: 10.1007/BF00965000. [DOI] [PubMed] [Google Scholar]
  13. Fish W. R., Looker D. L., Marr J. J., Berens R. L. Purine metabolism in the bloodstream forms of Trypanosoma gambiense and Trypanosoma rhodesiense. Biochim Biophys Acta. 1982 Nov 24;719(2):223–231. doi: 10.1016/0304-4165(82)90092-7. [DOI] [PubMed] [Google Scholar]
  14. Fish W. R., Marr J. J., Berens R. L., Looker D. L., Nelson D. J., LaFon S. W., Balber A. E. Inosine analogs as chemotherapeutic agents for African trypanosomes: metabolism in trypanosomes and efficacy in tissue culture. Antimicrob Agents Chemother. 1985 Jan;27(1):33–36. doi: 10.1128/aac.27.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fish W. R., Marr J. J., Berens R. L. Purine metabolism in Trypanosoma brucei gambiense. Biochim Biophys Acta. 1982 Feb 25;714(3):422–428. doi: 10.1016/0304-4165(82)90149-0. [DOI] [PubMed] [Google Scholar]
  16. Gallerano R. H., Marr J. J., Sosa R. R. Therapeutic efficacy of allopurinol in patients with chronic Chagas' disease. Am J Trop Med Hyg. 1990 Aug;43(2):159–166. doi: 10.4269/ajtmh.1990.43.159. [DOI] [PubMed] [Google Scholar]
  17. Ghoda L., Phillips M. A., Bass K. E., Wang C. C., Coffino P. Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. J Biol Chem. 1990 Jul 15;265(20):11823–11826. [PubMed] [Google Scholar]
  18. Hanson S., Adelman J., Ullman B. Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani. J Biol Chem. 1992 Feb 5;267(4):2350–2359. [PubMed] [Google Scholar]
  19. Hershey H. V., Taylor M. W. Nucleotide sequence and deduced amino acid sequence of Escherichia coli adenine phosphoribosyltransferase and comparison with other analogous enzymes. Gene. 1986;43(3):287–293. doi: 10.1016/0378-1119(86)90218-0. [DOI] [PubMed] [Google Scholar]
  20. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  21. Jochimsen B., Nygaard P., Vestergaard T. Location on the chromosome of Escherichia coli of genes governing purine metabolism. Adenosine deaminase (add), guanosine kinase (gsk) and hypoxanthine phosphoribosyltransferase (hpt). Mol Gen Genet. 1975 Dec 30;143(1):85–91. doi: 10.1007/BF00269424. [DOI] [PubMed] [Google Scholar]
  22. Jolly D. J., Okayama H., Berg P., Esty A. C., Filpula D., Bohlen P., Johnson G. G., Shively J. E., Hunkapillar T., Friedmann T. Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyl transferase. Proc Natl Acad Sci U S A. 1983 Jan;80(2):477–481. doi: 10.1073/pnas.80.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Konecki D. S., Brennand J., Fuscoe J. C., Caskey C. T., Chinault A. C. Hypoxanthine-guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants. Nucleic Acids Res. 1982 Nov 11;10(21):6763–6775. doi: 10.1093/nar/10.21.6763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Landfear S. M., Wirth D. F. Structure of mRNA encoded by tubulin genes in Leishmania enriettii. Mol Biochem Parasitol. 1985 Apr;15(1):61–82. doi: 10.1016/0166-6851(85)90029-5. [DOI] [PubMed] [Google Scholar]
  25. Leach T. M., Roberts C. J. Present status of chemotherapy and chemoprophylaxis of animal trypanosomiasis in the Eastern hemisphere. Pharmacol Ther. 1981;13(1):91–147. doi: 10.1016/0163-7258(81)90069-3. [DOI] [PubMed] [Google Scholar]
  26. Looker D. L., Berens R. L., Marr J. J. Purine metabolism in Leishmania donovani amastigotes and promastigotes. Mol Biochem Parasitol. 1983 Sep;9(1):15–28. doi: 10.1016/0166-6851(83)90053-1. [DOI] [PubMed] [Google Scholar]
  27. Marr J. J., Berens R. L., Nelson D. J. Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta. 1978 Dec 1;544(2):360–371. doi: 10.1016/0304-4165(78)90104-6. [DOI] [PubMed] [Google Scholar]
  28. Marr J. J., Berens R. L. Pyrazolopyrimidine metabolism in the pathogenic trypanosomatidae. Mol Biochem Parasitol. 1983 Apr;7(4):339–356. doi: 10.1016/0166-6851(83)90016-6. [DOI] [PubMed] [Google Scholar]
  29. Martinez S., Marr J. J. Allopurinol in the treatment of American cutaneous leishmaniasis. N Engl J Med. 1992 Mar 12;326(11):741–744. doi: 10.1056/NEJM199203123261105. [DOI] [PubMed] [Google Scholar]
  30. Murphy W. J., Watkins K. P., Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell. 1986 Nov 21;47(4):517–525. doi: 10.1016/0092-8674(86)90616-1. [DOI] [PubMed] [Google Scholar]
  31. Phillips M. A., Coffino P., Wang C. C. Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition. J Biol Chem. 1987 Jun 25;262(18):8721–8727. [PubMed] [Google Scholar]
  32. Phillips M. A., Wang C. C. A Trypanosoma brucei mutant resistant to alpha-difluoromethylornithine. Mol Biochem Parasitol. 1987 Jan 2;22(1):9–17. doi: 10.1016/0166-6851(87)90064-8. [DOI] [PubMed] [Google Scholar]
  33. Queen S. A., Vander Jagt D., Reyes P. Properties and substrate specificity of a purine phosphoribosyltransferase from the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol. 1988 Aug;30(2):123–133. doi: 10.1016/0166-6851(88)90105-3. [DOI] [PubMed] [Google Scholar]
  34. Richardson K. K., Fostel J., Skopek T. R. Nucleotide sequence of the xanthine guanine phosphoribosyl transferase gene of E. coli. Nucleic Acids Res. 1983 Dec 20;11(24):8809–8816. doi: 10.1093/nar/11.24.8809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schmidt G., Walter R. D., Königk E. A purine nucleoside hydrolase from Trypanosoma gambiense, purification and properties. Tropenmed Parasitol. 1975 Mar;26(1):19–26. [PubMed] [Google Scholar]
  37. Schwartzman J. D., Pfefferkorn E. R. Toxoplasma gondii: purine synthesis and salvage in mutant host cells and parasites. Exp Parasitol. 1982 Feb;53(1):77–86. doi: 10.1016/0014-4894(82)90094-7. [DOI] [PubMed] [Google Scholar]
  38. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Showalter R. E., Silverman M. R. Nucleotide sequence of a gene, hpt, for hypoxanthine phosphoribosyltransferase from Vibrio harveyi. Nucleic Acids Res. 1990 Aug 11;18(15):4621–4621. doi: 10.1093/nar/18.15.4621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sogin M. L., Elwood H. J., Gunderson J. H. Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1383–1387. doi: 10.1073/pnas.83.5.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sutton R. E., Boothroyd J. C. Evidence for trans splicing in trypanosomes. Cell. 1986 Nov 21;47(4):527–535. doi: 10.1016/0092-8674(86)90617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thomashow L. S., Milhausen M., Rutter W. J., Agabian N. Tubulin genes are tandemly linked and clustered in the genome of trypanosoma brucei. Cell. 1983 Jan;32(1):35–43. doi: 10.1016/0092-8674(83)90494-4. [DOI] [PubMed] [Google Scholar]
  43. Tschudi C., Ullu E. Polygene transcripts are precursors to calmodulin mRNAs in trypanosomes. EMBO J. 1988 Feb;7(2):455–463. doi: 10.1002/j.1460-2075.1988.tb02833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang C. C., Aldritt S. Purine salvage networks in Giardia lamblia. J Exp Med. 1983 Nov 1;158(5):1703–1712. doi: 10.1084/jem.158.5.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wang C. C., Simashkevich P. M. Purine metabolism in the protozoan parasite Eimeria tenella. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6618–6622. doi: 10.1073/pnas.78.11.6618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wilson K., Collart F. R., Huberman E., Stringer J. R., Ullman B. Amplification and molecular cloning of the IMP dehydrogenase gene of Leishmania donovani. J Biol Chem. 1991 Jan 25;266(3):1665–1671. [PubMed] [Google Scholar]
  47. Wilson K., Hanson S., Landfear S., Ullman B. Nucleotide sequence of the Leishmania donovani medRNA gene. Nucleic Acids Res. 1991 Oct 25;19(20):5787–5787. doi: 10.1093/nar/19.20.5787. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES