Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1986 Jun 11;14(11):4393–4400. doi: 10.1093/nar/14.11.4393

The nucleotide sequence of the gene for gamma-glutamylcysteine synthetase of Escherichia coli.

K Watanabe, Y Yamano, K Murata, A Kimura
PMCID: PMC311453  PMID: 2872655

Abstract

The nucleotide sequence of the gsh I gene for gamma-glutamylcysteine synthetase(GSH I) of Escherichia coli B has been determined. The gsh I structural gene contains 1557 bases in length and predicted a ploypeptide of 518 amino acids with a calculated molecular weight of 58,251. The value is in good agreement with that obtained from gel filtration and SDS/PAGE of GSH I. The initiation codon 5 bp downstream of putative Shine-Dalgarno sequence was an unusual TTG, which encoded methionine. For transcription, two sets of consensus promoter signals(-10 and -35 regions) overlapping each other were identified. The terminator signal shows the favored stem-loop structure with an adequate free energy delta G = -22.80 kcal/mol.

Full text

PDF
4393

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Büchel D. E., Gronenborn B., Müller-Hill B. Sequence of the lactose permease gene. Nature. 1980 Feb 7;283(5747):541–545. doi: 10.1038/283541a0. [DOI] [PubMed] [Google Scholar]
  2. Dube S. K., Rudland P. S., Clark B. F., Marcker K. A. A structural requirement for codon-anticodon interaction on the ribosome. Cold Spring Harb Symp Quant Biol. 1969;34:161–166. doi: 10.1101/sqb.1969.034.01.023. [DOI] [PubMed] [Google Scholar]
  3. Files J. G., Weber K., Coulondre C., Miller J. H. Identification of the UUG codon as a translational initiation codon in vivo. J Mol Biol. 1975 Jun 25;95(2):327–330. doi: 10.1016/0022-2836(75)90398-8. [DOI] [PubMed] [Google Scholar]
  4. Ganoza M. C., Marliere P., Kofoid E. C., Louis B. G. Initiator tRNA may recognize more than the initiation codon in mRNA: a model for translational initiation. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4587–4591. doi: 10.1073/pnas.82.14.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gushima H., Miya T., Murata K., Kimura A. Construction of glutathione-producing strains of Escherichia coli B by recombinant DNA techniques. J Appl Biochem. 1983 Feb-Apr;5(1-2):43–52. [PubMed] [Google Scholar]
  6. Ikemura T., Ozeki H. Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):1087–1097. doi: 10.1101/sqb.1983.047.01.123. [DOI] [PubMed] [Google Scholar]
  7. Lee N., Cozzitorto J., Wainwright N., Testa D. Cloning with tandem gene systems for high level gene expression. Nucleic Acids Res. 1984 Sep 11;12(17):6797–6812. doi: 10.1093/nar/12.17.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mackie G. A. Nucleotide sequence of the gene for ribosomal protein S20 and its flanking regions. J Biol Chem. 1981 Aug 10;256(15):8177–8182. [PubMed] [Google Scholar]
  9. Murata K., Kimura A. Some properties of glutathione biosynthesis-deficient mutants of Escherichia coli B. J Gen Microbiol. 1982 May;128(5):1047–1052. doi: 10.1099/00221287-128-5-1047. [DOI] [PubMed] [Google Scholar]
  10. Reddy P., Peterkofsky A., McKenney K. Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5656–5660. doi: 10.1073/pnas.82.17.5656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  12. Roy A., Haziza C., Danchin A. Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. EMBO J. 1983;2(5):791–797. doi: 10.1002/j.1460-2075.1983.tb01502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Valentin-Hansen P., Hammer-Jespersen K., Boetius F., Svendsen I. Structure and function of the intercistronic regulatory deoC-deoA element of Escherichia coli K-12. EMBO J. 1984 Jan;3(1):179–183. doi: 10.1002/j.1460-2075.1984.tb01781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weyens G., Rose K., Falmagne P., Glansdorff N., Piérard A. Synthesis of Escherichia coli carbamoylphosphate synthetase initiates at a UUG codon. Eur J Biochem. 1985 Jul 1;150(1):111–115. doi: 10.1111/j.1432-1033.1985.tb08995.x. [DOI] [PubMed] [Google Scholar]
  15. Young I. G., Rogers B. L., Campbell H. D., Jaworowski A., Shaw D. C. Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli. UUG initiation codon. Eur J Biochem. 1981 May;116(1):165–170. doi: 10.1111/j.1432-1033.1981.tb05314.x. [DOI] [PubMed] [Google Scholar]
  16. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES