Skip to main content
. 2011 Jun 14;27(13):i61–i68. doi: 10.1093/bioinformatics/btr249

Table 3.

Comparing the average AUC for various Multi-viewpoint IR methods

λ1 SAS=2
SAS=3.5
SAS=5
I II III I II III I II III
0 0.89 0.87 0.8 0.77 0.72 0.64 0.75 0.73 0.68
0.1 0.89 0.87 0.81 0.78 0.73 0.65 0.75 0.73 0.69
0.2 0.9 0.88 0.81 0.78 0.74 0.66 0.75 0.73 0.69
0.3 0.9 0.88 0.82 0.79 0.75 0.67 0.75 0.74 0.7
0.4 0.91 0.89 0.83 0.79 0.76 0.69 0.77 0.74 0.7
0.5 0.91 0.9 0.85 0.8 0.77 0.7 0.75 0.74 0.71
0.6 0.91 0.9 0.86 0.8 0.78 0.72 0.75 0.73 0.71
0.7 0.91 0.9 0.88 0.8 0.78 0.75 0.75 0.73 0.71
0.8 0.91 0.91 0.89 0.8 0.79 0.77 0.74 0.72 0.71
0.9 0.91 0.9 0.9 0.8 0.78 0.77 0.72 0.7 0.7
1 0.9 0.9 0.9 0.78 0.78 0.78 0.68 0.68 0.68

The multi-viewpoint models are obtained by combining latent dirichilet allocation topic model (LDA) with weight λ1 and one of the following vector space models (i) term frequency (TF) (I), (ii) term frequency inverse document frequency (TF-IDF) (II) and (iii) boolean (BOOL) (III) with weight λ2. Since λ2=1− λ1, we have not mentioned their values explicitly in the table.