Abstract
Three analogues each of leucine and isoleucine carrying hydroxy groups in gamma- or delta- or gamma- and delta-position have been synthesized, and tested in the aminoacylation by leucyl-tRNA synthetases from E. coli and yeast. Hydrolytic proofreading, as proposed in the chemical proofreading model, of these analogues and of homocysteine should result in a lactonisation of these compounds and therefore provide information regarding the proofreading mechanism of the two leucyl-tRNA synthetases. Leucyl-tRNA synthetase from E. coli shows a high initial substrate discrimination. Only two analogues, gamma-hydroxyleucine and homocysteine are activated and transferred to tRNALeu where a post-transfer proofreading occurs. Lactonisation of gamma-hydroxyleucine and homocysteine could be detected. Leucyl-tRNA synthetase from yeast has a relatively poor initial discrimination of these substrates, which is compensated by a very effective pre-transfer proofreading on the aminoacyl-adenylate level. No lactonisation nor mischarged tRNALeu is detectable.
Full text
PDF![7529](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/6236e5ea91d5/nar00288-0027.png)
![7530](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/618a3473e33f/nar00288-0028.png)
![7531](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/2dc800638ba9/nar00288-0029.png)
![7532](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/63145d0b1463/nar00288-0030.png)
![7533](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/f5a20c0d2a0c/nar00288-0031.png)
![7534](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/07195a412d88/nar00288-0032.png)
![7535](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/4edbae46198c/nar00288-0033.png)
![7536](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/826ffc06ee85/nar00288-0034.png)
![7537](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/eb777eab8b91/nar00288-0035.png)
![7538](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/988e42a0a756/nar00288-0036.png)
![7539](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7071/311778/9686c7e83417/nar00288-0037.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham A. K. The fidelity of translation. Prog Nucleic Acid Res Mol Biol. 1983;28:81–100. doi: 10.1016/s0079-6603(08)60084-7. [DOI] [PubMed] [Google Scholar]
- Baldwin A. N., Berg P. Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J Biol Chem. 1966 Feb 25;241(4):839–845. [PubMed] [Google Scholar]
- Bischoff R., Graeser E., McLaughlin L. W. tRNA separation by high-performance liquid chromatography using an aggregate of ODS-Hypersil and trioctylmethylammonium chloride. J Chromatogr. 1983 Mar 4;257(2):305–315. doi: 10.1016/s0021-9673(01)88186-3. [DOI] [PubMed] [Google Scholar]
- Eldred E. W., Schimmel P. R. Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J Biol Chem. 1972 May 10;247(9):2961–2964. [PubMed] [Google Scholar]
- Ellis N., Gallant J. An estimate of the global error frequency in translation. Mol Gen Genet. 1982;188(2):169–172. doi: 10.1007/BF00332670. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Dingwall C. Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Biochemistry. 1979 Apr 3;18(7):1245–1249. doi: 10.1021/bi00574a020. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Dingwall C. Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry. 1979 Jun 12;18(12):2627–2631. doi: 10.1021/bi00579a030. [DOI] [PubMed] [Google Scholar]
- Fersht A. R. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry. 1977 Mar 8;16(5):1025–1030. doi: 10.1021/bi00624a034. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Kaethner M. M. Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing. Biochemistry. 1976 Jul 27;15(15):3342–3346. doi: 10.1021/bi00660a026. [DOI] [PubMed] [Google Scholar]
- Freist W., Pardowitz I., Cramer F. Isoleucyl-tRNA synthetase from bakers' yeast: multistep proofreading in discrimination between isoleucine and valine with modulated accuracy, a scheme for molecular recognition by energy dissipation. Biochemistry. 1985 Nov 19;24(24):7014–7023. doi: 10.1021/bi00345a040. [DOI] [PubMed] [Google Scholar]
- Gabius H. J., von der Haar F., Cramer F. Evolutionary aspects of accuracy of phenylalanyl-tRNA synthetase. A comparative study with enzymes from Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, and turkey liver using phenylalanine analogues. Biochemistry. 1983 May 10;22(10):2331–2339. doi: 10.1021/bi00279a005. [DOI] [PubMed] [Google Scholar]
- Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4135–4139. doi: 10.1073/pnas.71.10.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igloi G. L., von der Haar F., Cramer F. Aminoacyl-tRNA synthetases from yeast: generality of chemical proofreading in the prevention of misaminoacylation of tRNA. Biochemistry. 1978 Aug 22;17(17):3459–3468. doi: 10.1021/bi00610a006. [DOI] [PubMed] [Google Scholar]
- Igloi G. L., von der Haar F., Cramer F. Experimental proof for the misactivation of amino acids by aminoacyl-tRNA synthetases. Methods Enzymol. 1979;59:282–291. doi: 10.1016/0076-6879(79)59091-0. [DOI] [PubMed] [Google Scholar]
- Igloi G. L., von der Haar F., Cramer F. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast. "Chemical proofreading" of Thr-tRNA Val by valyl-tRNA synthetase studied with modified tRNA Val and amino acid analogues. Biochemistry. 1977 Apr 19;16(8):1696–1702. doi: 10.1021/bi00627a027. [DOI] [PubMed] [Google Scholar]
- Jakubowski H. Z., Pastuzyn A., Loftfield R. B. The determination of aminoacyl adenylate by thin-layer chromatography. Anal Biochem. 1977 Sep;82(1):29–37. doi: 10.1016/0003-2697(77)90130-0. [DOI] [PubMed] [Google Scholar]
- Jakubowski H., Fersht A. R. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res. 1981 Jul 10;9(13):3105–3117. doi: 10.1093/nar/9.13.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakubowski H. Valyl-tRNA synthetase form yellow lupin seeds: hydrolysis of the enzyme-bound noncognate aminoacyl adenylate as a possible mechanism of increasing specificity of the aminoacyl-tRNA synthetase. Biochemistry. 1980 Oct 28;19(22):5071–5078. doi: 10.1021/bi00563a021. [DOI] [PubMed] [Google Scholar]
- Kern D., Giegé R., Ebel J. P. Purification and some properties of alanyl- and leucyl-tRNA synthetases from baker's yeast. Biochim Biophys Acta. 1981 Mar 26;653(1):83–90. doi: 10.1016/0005-2787(81)90106-4. [DOI] [PubMed] [Google Scholar]
- Lin S. X., Baltzinger M., Remy P. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: an efficient discrimination between tyrosine and phenylalanine at the level of the aminoacyladenylate-enzyme complex. Biochemistry. 1983 Feb 1;22(3):681–689. doi: 10.1021/bi00272a024. [DOI] [PubMed] [Google Scholar]
- Loftfield R. B., Eigner E. A. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases. Biochim Biophys Acta. 1966 Dec 28;130(2):426–448. doi: 10.1016/0304-4165(66)90239-x. [DOI] [PubMed] [Google Scholar]
- Loftfield R. B., Vanderjagt D. The frequency of errors in protein biosynthesis. Biochem J. 1972 Aug;128(5):1353–1356. doi: 10.1042/bj1281353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimmel P. R. Five specific protein-transfer RNA interactions. CRC Crit Rev Biochem. 1980;9(3):207–251. doi: 10.3109/10409238009105435. [DOI] [PubMed] [Google Scholar]
- Schimmel P. R., Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
- Schneider D., Solfert R., von der Haar F. Large scale purification of tRNA ser , tRNA tyr and tRNA phe from Baker's yeast. Hoppe Seylers Z Physiol Chem. 1972 Aug;353(8):1330–1336. doi: 10.1515/bchm2.1972.353.2.1330. [DOI] [PubMed] [Google Scholar]
- Simlot M. M., Pfaender P. Amino acid dependent ATP-32PPi exchange measurement. A filter paper disk method. FEBS Lett. 1973 Sep 15;35(2):201–203. doi: 10.1016/0014-5793(73)80284-4. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., Sternbach H., von der Haar F., Cramer F. Enzymatic incorporation of ATP and CTP analogues into the 3' end of tRNA. Eur J Biochem. 1977 Dec;81(3):579–589. doi: 10.1111/j.1432-1033.1977.tb11985.x. [DOI] [PubMed] [Google Scholar]
- Tsui W. C., Fersht A. R. Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Nucleic Acids Res. 1981 Sep 25;9(18):4627–4637. doi: 10.1093/nar/9.18.4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von der Haar F., Cramer F. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine. Biochemistry. 1976 Sep 7;15(18):4131–4138. doi: 10.1021/bi00663a034. [DOI] [PubMed] [Google Scholar]