Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 28;67(Pt 6):o1543. doi: 10.1107/S1600536811019337

2-Bromo-2-methyl-N-p-tolyl­propanamide

Rodolfo Moreno-Fuquen a,*, David E Quintero a, Fabio Zuluaga a, Alan R Kennedy b, Regina H De Almeida Santos c
PMCID: PMC3120290  PMID: 21754902

Abstract

In the title mol­ecule, C11H14BrNO, there is twist between the mean plane of the amide group and the benzene ring [C(=O)—N—C C torsion angle = −31.2 (5)°]. In the crystal, inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds link mol­ecules into chains along [100]. The methyl group H atoms are disordered over two sets of sites with equal occupancy.

Related literature

For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001); Kato et al. (1995); Pietrasik & Tsarevsky (2010). For a related structure, see: Moreno-Fuquen et al. (2011). For hydrogen-bond graph sets, see: Etter (1990).graphic file with name e-67-o1543-scheme1.jpg

Experimental

Crystal data

  • C11H14BrNO

  • M r = 256.14

  • Orthorhombic, Inline graphic

  • a = 10.0728 (4) Å

  • b = 11.2577 (4) Å

  • c = 20.3670 (6) Å

  • V = 2309.55 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.53 mm−1

  • T = 123 K

  • 0.25 × 0.12 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.751, T max = 1.000

  • 10140 measured reflections

  • 2762 independent reflections

  • 1819 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.093

  • S = 1.06

  • 2762 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811019337/lh5254sup1.cif

e-67-o1543-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019337/lh5254Isup2.hkl

e-67-o1543-Isup2.hkl (135.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019337/lh5254Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.13 (2) 2.937 (3) 161 (3)
C1—H1C⋯O1i 0.98 2.44 3.382 (4) 162
C10—H10⋯O1i 0.95 2.57 3.321 (4) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF and FZ also thank the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil, for partial financial support.

supplementary crystallographic information

Comment

The ATRP process (polymerization by atom transfer radical) allows control of the composition and functionality in polymerization reactions (Pietrasik & Tsarevsky, 2010). The use of functional initiators in these reactions allows the synthesis of new materials. Most initiators for ATRP processes are alkyl halides (Matyjaszewski & Xia, 2001; Kato et al., 1995). As part of our work related to functional initiators in polymerization processes (Moreno-Fuquen et al., 2011) we have determined the crystal structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. There is a twist between the mean plane of the amide group and benzene ring giving a C4—N1—C5—C6 torsion angle of -31.2 (5) °. In the crystal, intermolecular N—H···O and weak C—H···O hydrogen bonds link molecules into one-dimensional chains along [100] incorporating C(4) graph motifs (Etter, 1990) (see Table 1 and Fig. 2).

Experimental

The initial reagents were purchased from Aldrich Chemical Co. and were used as received. In a 100mL round bottom flask 4-methylaniline (3.173 mmoles, 0.340 g), triethylamine (0.635 mmol, 0.064 g) were mixed, then a solution of 2-bromo isobutiryl bromide (0.685 g) in anhydrous THF (5 ml) was added drop wise, under an argon stream. The reaction was carried out in a dry bag overnight under magnetic stirring. The solid was filtered off and dichloromethane (20 ml) added to the organic phase which was washed with brine (50 ml) followed by water (10 ml). The solution was concentrated at low pressure affording colourless crystals and recrystalized from a solution of hexane and ethyl acetate (80:20). M.p. 364 (1) K.

Refinement

The H-atoms were placed geometrically with C—H= 0.95 Å for aromatic, C—H = 0.98 Å for methyl and Uiso(H) 1.2 and 1.5 times Ueq of the parent atom respectively. The methyl group H atoms are disordered over two sets of sites with equal occupancy.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of a one dimensional chain along [100]. Symmetry code: (i) x-1/2,+y,-z+1/2.

Crystal data

C11H14BrNO Dx = 1.473 Mg m3
Mr = 256.14 Melting point: 385(1) K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2266 reflections
a = 10.0728 (4) Å θ = 3.4–29.5°
b = 11.2577 (4) Å µ = 3.53 mm1
c = 20.3670 (6) Å T = 123 K
V = 2309.55 (14) Å3 Tablet, colourless
Z = 8 0.25 × 0.12 × 0.05 mm
F(000) = 1040

Data collection

Oxford Diffraction Xcalibur E diffractometer 2762 independent reflections
Radiation source: fine-focus sealed tube 1819 reflections with I > 2σ(I)
graphite Rint = 0.049
ω scans θmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −12→13
Tmin = 0.751, Tmax = 1.000 k = −10→14
10140 measured reflections l = −26→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.7321P] where P = (Fo2 + 2Fc2)/3
2762 reflections (Δ/σ)max < 0.001
133 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.74332 (3) 0.28652 (3) 0.384590 (15) 0.02982 (13)
O1 0.94616 (17) 0.2851 (2) 0.24129 (10) 0.0200 (5)
N1 0.7262 (2) 0.2730 (3) 0.21911 (12) 0.0158 (6)
C1 0.6864 (3) 0.4811 (3) 0.30022 (16) 0.0214 (7)
H1A 0.7056 0.5288 0.2611 0.032*
H1B 0.6768 0.5335 0.3384 0.032*
H1C 0.6037 0.4368 0.2935 0.032*
C2 0.7996 (3) 0.3946 (3) 0.31211 (15) 0.0173 (7)
C3 0.9232 (3) 0.4587 (3) 0.33541 (16) 0.0287 (9)
H3A 0.9914 0.4004 0.3472 0.043*
H3B 0.9015 0.5073 0.3739 0.043*
H3C 0.9565 0.5100 0.3002 0.043*
C4 0.8312 (3) 0.3116 (3) 0.25448 (14) 0.0158 (7)
C5 0.7307 (2) 0.1928 (3) 0.16557 (14) 0.0160 (7)
C6 0.8384 (3) 0.1847 (3) 0.12261 (14) 0.0203 (7)
H6 0.9135 0.2348 0.1281 0.024*
C7 0.8347 (3) 0.1030 (3) 0.07213 (15) 0.0241 (8)
H7 0.9082 0.0986 0.0431 0.029*
C8 0.7285 (3) 0.0274 (3) 0.06198 (15) 0.0229 (8)
C9 0.6210 (3) 0.0383 (3) 0.10438 (16) 0.0273 (8)
H9 0.5457 −0.0113 0.0985 0.033*
C10 0.6216 (3) 0.1202 (3) 0.15499 (15) 0.0225 (8)
H10 0.5463 0.1267 0.1829 0.027*
C11 0.7287 (3) −0.0636 (4) 0.00758 (17) 0.0338 (9)
H11A 0.6452 −0.1082 0.0085 0.051* 0.50
H11B 0.8033 −0.1184 0.0138 0.051* 0.50
H11C 0.7378 −0.0233 −0.0348 0.051* 0.50
H11D 0.8123 −0.0584 −0.0168 0.051* 0.50
H11E 0.6542 −0.0482 −0.0222 0.051* 0.50
H11F 0.7197 −0.1433 0.0264 0.051* 0.50
H1N 0.652 (2) 0.292 (3) 0.2342 (15) 0.032 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0475 (2) 0.0235 (2) 0.01844 (18) 0.00201 (17) 0.00410 (15) 0.00302 (15)
O1 0.0101 (9) 0.0260 (14) 0.0240 (12) 0.0013 (10) −0.0012 (8) −0.0053 (11)
N1 0.0086 (12) 0.0198 (15) 0.0191 (13) 0.0006 (11) 0.0013 (9) −0.0026 (11)
C1 0.0213 (16) 0.017 (2) 0.0254 (18) 0.0021 (13) 0.0028 (14) −0.0020 (15)
C2 0.0131 (13) 0.0159 (19) 0.0228 (17) −0.0020 (12) 0.0012 (12) 0.0001 (15)
C3 0.0218 (16) 0.037 (3) 0.0269 (19) −0.0069 (16) −0.0011 (14) −0.0152 (18)
C4 0.0163 (14) 0.0137 (18) 0.0175 (15) −0.0003 (12) −0.0010 (12) 0.0051 (14)
C5 0.0137 (14) 0.0189 (18) 0.0153 (15) 0.0014 (13) −0.0025 (11) 0.0010 (13)
C6 0.0172 (14) 0.025 (2) 0.0182 (16) −0.0014 (13) 0.0012 (12) 0.0021 (15)
C7 0.0217 (16) 0.034 (2) 0.0165 (17) 0.0033 (15) 0.0025 (13) −0.0009 (16)
C8 0.0334 (19) 0.020 (2) 0.0155 (16) 0.0022 (15) −0.0021 (14) −0.0022 (14)
C9 0.0275 (17) 0.031 (2) 0.0230 (18) −0.0104 (15) −0.0014 (14) −0.0048 (16)
C10 0.0182 (15) 0.030 (2) 0.0192 (17) −0.0032 (14) 0.0029 (13) −0.0042 (16)
C11 0.051 (2) 0.029 (2) 0.0213 (18) −0.0049 (17) 0.0051 (16) −0.0064 (16)

Geometric parameters (Å, °)

Br1—C2 1.995 (3) C6—C7 1.380 (4)
O1—C4 1.226 (3) C6—H6 0.9500
N1—C4 1.352 (4) C7—C8 1.382 (4)
N1—C5 1.416 (4) C7—H7 0.9500
N1—H1N 0.840 (17) C8—C9 1.391 (4)
C1—C2 1.519 (4) C8—C11 1.509 (5)
C1—H1A 0.9800 C9—C10 1.382 (4)
C1—H1B 0.9800 C9—H9 0.9500
C1—H1C 0.9800 C10—H10 0.9500
C2—C3 1.515 (4) C11—H11A 0.9800
C2—C4 1.533 (4) C11—H11B 0.9800
C3—H3A 0.9800 C11—H11C 0.9800
C3—H3B 0.9800 C11—H11D 0.9800
C3—H3C 0.9800 C11—H11E 0.9800
C5—C10 1.387 (4) C11—H11F 0.9800
C5—C6 1.397 (4)
C4—N1—C5 126.2 (2) C8—C7—H7 118.5
C4—N1—H1N 115 (2) C7—C8—C9 117.1 (3)
C5—N1—H1N 118 (2) C7—C8—C11 121.8 (3)
C2—C1—H1A 109.5 C9—C8—C11 121.1 (3)
C2—C1—H1B 109.5 C10—C9—C8 121.2 (3)
H1A—C1—H1B 109.5 C10—C9—H9 119.4
C2—C1—H1C 109.5 C8—C9—H9 119.4
H1A—C1—H1C 109.5 C9—C10—C5 120.8 (3)
H1B—C1—H1C 109.5 C9—C10—H10 119.6
C3—C2—C1 111.2 (3) C5—C10—H10 119.6
C3—C2—C4 111.1 (2) C8—C11—H11A 109.5
C1—C2—C4 115.1 (2) C8—C11—H11B 109.5
C3—C2—Br1 107.0 (2) H11A—C11—H11B 109.5
C1—C2—Br1 107.20 (19) C8—C11—H11C 109.5
C4—C2—Br1 104.7 (2) H11A—C11—H11C 109.5
C2—C3—H3A 109.5 H11B—C11—H11C 109.5
C2—C3—H3B 109.5 C8—C11—H11D 109.5
H3A—C3—H3B 109.5 H11A—C11—H11D 141.1
C2—C3—H3C 109.5 H11B—C11—H11D 56.3
H3A—C3—H3C 109.5 H11C—C11—H11D 56.3
H3B—C3—H3C 109.5 C8—C11—H11E 109.5
O1—C4—N1 123.0 (3) H11A—C11—H11E 56.3
O1—C4—C2 120.8 (3) H11B—C11—H11E 141.1
N1—C4—C2 116.2 (2) H11C—C11—H11E 56.3
C10—C5—C6 118.7 (3) H11D—C11—H11E 109.5
C10—C5—N1 118.1 (3) C8—C11—H11F 109.5
C6—C5—N1 123.3 (3) H11A—C11—H11F 56.3
C7—C6—C5 119.3 (3) H11B—C11—H11F 56.3
C7—C6—H6 120.4 H11C—C11—H11F 141.1
C5—C6—H6 120.4 H11D—C11—H11F 109.5
C6—C7—C8 122.9 (3) H11E—C11—H11F 109.5
C6—C7—H7 118.5
C5—N1—C4—O1 4.0 (5) C10—C5—C6—C7 −1.6 (5)
C5—N1—C4—C2 −177.5 (3) N1—C5—C6—C7 179.3 (3)
C3—C2—C4—O1 14.6 (4) C5—C6—C7—C8 −0.4 (5)
C1—C2—C4—O1 142.0 (3) C6—C7—C8—C9 1.6 (5)
Br1—C2—C4—O1 −100.5 (3) C6—C7—C8—C11 −178.2 (3)
C3—C2—C4—N1 −163.9 (3) C7—C8—C9—C10 −1.0 (5)
C1—C2—C4—N1 −36.5 (4) C11—C8—C9—C10 178.8 (3)
Br1—C2—C4—N1 81.0 (3) C8—C9—C10—C5 −0.9 (5)
C4—N1—C5—C10 149.7 (3) C6—C5—C10—C9 2.2 (5)
C4—N1—C5—C6 −31.2 (5) N1—C5—C10—C9 −178.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.13 (2) 2.937 (3) 161 (3)
C1—H1C···O1i 0.98 2.44 3.382 (4) 162
C10—H10···O1i 0.95 2.57 3.321 (4) 137

Symmetry codes: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5254).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. (1995). Macromolecules, 28, 1721–1723.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990. [DOI] [PubMed]
  8. Moreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011). Acta Cryst. E67, o659. [DOI] [PMC free article] [PubMed]
  9. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  10. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Pietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333–2340.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811019337/lh5254sup1.cif

e-67-o1543-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019337/lh5254Isup2.hkl

e-67-o1543-Isup2.hkl (135.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019337/lh5254Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES