Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):o1456. doi: 10.1107/S1600536811018253

1-[(5-Bromo­pent­yloxy)meth­yl]pyrene

Xixi Bian a, Tongjiang Cai a, Jin Zhou a, Qin Huang a, Xunwen Xiao a,*
PMCID: PMC3120293  PMID: 21754829

Abstract

In the title compound, C22H21BrO, other than the Br atom, the non-H atoms are approximately co-planar [maxium deviation = 0.178 (2) Å] and the alk­oxy chain shows an all-anti conformation. A weak inter­molecular C—H⋯Br hydrogen bond contributes to the stabilization of the crystal structure.

Related literature

For the synthesis of pyrene derivatives, see Filby & Steed (2006). For the use of pyrenes as fluorescence sensors, see: Bell & Hext (2004). For related structures, see: Fun et al. (2009); Gruber et al. (2010); Xiao et al. (2005).graphic file with name e-67-o1456-scheme1.jpg

Experimental

Crystal data

  • C22H21BrO

  • M r = 381.30

  • Triclinic, Inline graphic

  • a = 7.417 (2) Å

  • b = 7.4817 (16) Å

  • c = 17.545 (5) Å

  • α = 79.924 (19)°

  • β = 88.90 (2)°

  • γ = 64.295 (12)°

  • V = 861.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 223 K

  • 0.45 × 0.40 × 0.20 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.373, T max = 0.616

  • 7097 measured reflections

  • 3085 independent reflections

  • 2399 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.047

  • S = 0.88

  • 3085 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018253/ng5165sup1.cif

e-67-o1456-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018253/ng5165Isup2.hkl

e-67-o1456-Isup2.hkl (151.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018253/ng5165Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br1i 0.94 3.02 3.869 (2) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the NNS (20902051), the Education Committee of Zhejiang Province (Z200906833), Ningbo Natural Science (2010 A610186) and the Ministry of Education Scientific Research Foundation for Returned Overseas Scholars.

supplementary crystallographic information

Comment

As a fluorogenic unit, pyrene is one of the most useful fluorescene probe because of its relatively efficient excimer formation and emission. In this respect, the title compound was prepared as part of our research on the solid state structure of fluorogenic tetrathiafulvalene with possible molecular switch (Xiao et al.., 2005).

The bond lengths and bond angles of the title compound are found to have norml values (Fun et al.., 2009 Gruber et al.., 2010). Expect the Br atom and H atoms, the molecule is essentially planar with the maximum deviation from planarity being 0.1781 (21) Å. In the substitute alkoxy chain, expect the Br atom, it shows the typical all-anti conformation (Fig.1).

The crystal packing is stabilized by C—H···Br intermolecular hydrogen bonding (table.1) (Fig.2).

Experimental

The title compound was synthesiaed according to a literature procedure (Xiao et al.., 2005). Slow evaporation of a solution in THF gave single crystals suitable for X–ray analysis.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99Å and Uiso = 1.2–1.5 Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound.Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing diagram view along the crystallographic 〈i〉b〈/i〉 axis. Dashed lines indicate the hydrogen bonding.

Crystal data

C22H21BrO Z = 2
Mr = 381.30 F(000) = 392
Triclinic, P1 Dx = 1.469 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 7.417 (2) Å Cell parameters from 4242 reflections
b = 7.4817 (16) Å θ = 3.1–27.5°
c = 17.545 (5) Å µ = 2.39 mm1
α = 79.924 (19)° T = 223 K
β = 88.90 (2)° Block, colorless
γ = 64.295 (12)° 0.45 × 0.40 × 0.20 mm
V = 861.9 (4) Å3

Data collection

Rigaku Saturn diffractometer 3085 independent reflections
Radiation source: fine-focus sealed tube 2399 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 14.63 pixels mm-1 θmax = 25.5°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −9→9
Tmin = 0.373, Tmax = 0.616 l = −21→21
7097 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047 H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0129P)2] where P = (Fo2 + 2Fc2)/3
3085 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.30010 (4) 0.85258 (4) 0.015557 (11) 0.04908 (9)
O1 0.35680 (18) 0.46204 (17) 0.40464 (6) 0.0263 (3)
C1 0.2422 (3) 0.4448 (3) 0.53439 (9) 0.0217 (4)
C2 0.3303 (3) 0.2367 (3) 0.54290 (9) 0.0246 (4)
H2 0.3941 0.1767 0.5010 0.030*
C3 0.3272 (3) 0.1144 (3) 0.61153 (9) 0.0272 (4)
H3 0.3891 −0.0266 0.6156 0.033*
C4 0.2324 (3) 0.1992 (3) 0.67517 (9) 0.0222 (4)
C5 0.2242 (3) 0.0795 (3) 0.74734 (9) 0.0278 (4)
H5 0.2844 −0.0619 0.7528 0.033*
C6 0.1319 (3) 0.1649 (3) 0.80776 (9) 0.0285 (4)
H6 0.1286 0.0818 0.8541 0.034*
C7 0.0391 (3) 0.3794 (3) 0.80237 (9) 0.0250 (4)
C8 −0.0539 (3) 0.4721 (3) 0.86452 (10) 0.0308 (5)
H8 −0.0562 0.3920 0.9119 0.037*
C9 −0.1421 (3) 0.6798 (3) 0.85704 (10) 0.0368 (5)
H9 −0.2031 0.7393 0.8994 0.044*
C10 −0.1415 (3) 0.8005 (3) 0.78816 (10) 0.0344 (5)
H10 −0.2032 0.9416 0.7840 0.041*
C11 −0.0503 (3) 0.7163 (3) 0.72412 (9) 0.0266 (4)
C12 −0.0449 (3) 0.8358 (3) 0.65197 (10) 0.0300 (4)
H12 −0.1070 0.9772 0.6464 0.036*
C13 0.0471 (3) 0.7513 (3) 0.59160 (10) 0.0274 (4)
H13 0.0481 0.8352 0.5451 0.033*
C14 0.1431 (3) 0.5368 (3) 0.59663 (9) 0.0209 (4)
C15 0.1394 (2) 0.4125 (3) 0.66725 (9) 0.0203 (4)
C16 0.0418 (3) 0.5033 (3) 0.73151 (9) 0.0218 (4)
C17 0.2486 (3) 0.5781 (3) 0.46037 (9) 0.0248 (4)
H17A 0.1114 0.6679 0.4390 0.030*
H17B 0.3122 0.6620 0.4716 0.030*
C18 0.3537 (3) 0.5952 (3) 0.33503 (9) 0.0240 (4)
H18A 0.4167 0.6799 0.3461 0.029*
H18B 0.2145 0.6839 0.3158 0.029*
C19 0.4640 (3) 0.4774 (3) 0.27364 (9) 0.0238 (4)
H19A 0.4014 0.3925 0.2625 0.029*
H19B 0.6035 0.3893 0.2925 0.029*
C20 0.4582 (3) 0.6222 (3) 0.19985 (9) 0.0254 (4)
H20A 0.3180 0.7134 0.1830 0.030*
H20B 0.5232 0.7045 0.2117 0.030*
C21 0.5605 (3) 0.5177 (3) 0.13337 (9) 0.0289 (4)
H21A 0.6977 0.4188 0.1515 0.035*
H21B 0.4890 0.4438 0.1188 0.035*
C22 0.5683 (3) 0.6598 (3) 0.06263 (10) 0.0380 (5)
H22A 0.6453 0.5811 0.0242 0.046*
H22B 0.6387 0.7348 0.0770 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.06041 (17) 0.05227 (16) 0.02991 (11) −0.02606 (13) −0.00843 (10) 0.00909 (9)
O1 0.0320 (8) 0.0235 (7) 0.0188 (6) −0.0089 (6) 0.0073 (6) −0.0022 (5)
C1 0.0203 (10) 0.0251 (11) 0.0197 (8) −0.0110 (9) −0.0006 (7) −0.0007 (8)
C2 0.0273 (11) 0.0246 (11) 0.0209 (8) −0.0098 (9) 0.0045 (8) −0.0058 (8)
C3 0.0318 (12) 0.0187 (11) 0.0280 (9) −0.0085 (9) 0.0022 (8) −0.0038 (8)
C4 0.0226 (10) 0.0226 (11) 0.0210 (8) −0.0101 (9) −0.0007 (8) −0.0027 (8)
C5 0.0329 (12) 0.0193 (11) 0.0274 (9) −0.0099 (10) −0.0009 (9) 0.0016 (8)
C6 0.0323 (12) 0.0316 (12) 0.0214 (9) −0.0170 (10) 0.0001 (8) 0.0037 (8)
C7 0.0243 (11) 0.0351 (12) 0.0199 (8) −0.0173 (10) 0.0025 (8) −0.0042 (8)
C8 0.0331 (12) 0.0414 (13) 0.0229 (9) −0.0217 (11) 0.0066 (9) −0.0039 (9)
C9 0.0422 (13) 0.0464 (14) 0.0310 (10) −0.0243 (12) 0.0161 (10) −0.0184 (10)
C10 0.0384 (13) 0.0284 (12) 0.0384 (11) −0.0135 (10) 0.0135 (10) −0.0154 (9)
C11 0.0274 (11) 0.0275 (12) 0.0274 (9) −0.0133 (10) 0.0052 (8) −0.0084 (8)
C12 0.0350 (12) 0.0179 (11) 0.0333 (10) −0.0076 (10) 0.0082 (9) −0.0066 (8)
C13 0.0332 (11) 0.0240 (11) 0.0223 (9) −0.0119 (10) 0.0025 (8) 0.0005 (8)
C14 0.0202 (10) 0.0225 (11) 0.0199 (8) −0.0100 (9) −0.0005 (7) −0.0024 (8)
C15 0.0192 (10) 0.0236 (11) 0.0186 (8) −0.0101 (9) 0.0003 (7) −0.0026 (7)
C16 0.0199 (10) 0.0257 (11) 0.0214 (8) −0.0118 (9) 0.0005 (7) −0.0037 (8)
C17 0.0255 (11) 0.0267 (11) 0.0206 (8) −0.0099 (9) 0.0036 (8) −0.0044 (8)
C18 0.0272 (11) 0.0251 (11) 0.0179 (8) −0.0114 (9) 0.0013 (8) 0.0008 (8)
C19 0.0255 (11) 0.0236 (11) 0.0215 (8) −0.0106 (9) 0.0020 (8) −0.0022 (8)
C20 0.0287 (11) 0.0274 (11) 0.0200 (8) −0.0121 (9) 0.0049 (8) −0.0054 (8)
C21 0.0320 (11) 0.0321 (12) 0.0216 (8) −0.0139 (10) 0.0039 (8) −0.0033 (8)
C22 0.0406 (13) 0.0491 (14) 0.0252 (9) −0.0213 (11) 0.0063 (9) −0.0050 (9)

Geometric parameters (Å, °)

Br1—C22 1.969 (2) C11—C16 1.418 (2)
O1—C17 1.4200 (19) C11—C12 1.427 (2)
O1—C18 1.4283 (19) C12—C13 1.349 (2)
C1—C2 1.383 (2) C12—H12 0.9400
C1—C14 1.414 (2) C13—C14 1.433 (2)
C1—C17 1.506 (2) C13—H13 0.9400
C2—C3 1.386 (2) C14—C15 1.421 (2)
C2—H2 0.9400 C15—C16 1.437 (2)
C3—C4 1.405 (2) C17—H17A 0.9800
C3—H3 0.9400 C17—H17B 0.9800
C4—C15 1.419 (2) C18—C19 1.510 (2)
C4—C5 1.434 (2) C18—H18A 0.9800
C5—C6 1.353 (2) C18—H18B 0.9800
C5—H5 0.9400 C19—C20 1.524 (2)
C6—C7 1.432 (3) C19—H19A 0.9800
C6—H6 0.9400 C19—H19B 0.9800
C7—C8 1.402 (2) C20—C21 1.523 (2)
C7—C16 1.420 (2) C20—H20A 0.9800
C8—C9 1.382 (3) C20—H20B 0.9800
C8—H8 0.9400 C21—C22 1.504 (2)
C9—C10 1.378 (3) C21—H21A 0.9800
C9—H9 0.9400 C21—H21B 0.9800
C10—C11 1.402 (2) C22—H22A 0.9800
C10—H10 0.9400 C22—H22B 0.9800
C17—O1—C18 109.08 (13) C4—C15—C14 120.57 (15)
C2—C1—C14 119.58 (16) C4—C15—C16 119.62 (15)
C2—C1—C17 121.89 (15) C14—C15—C16 119.80 (16)
C14—C1—C17 118.53 (16) C11—C16—C7 120.18 (15)
C1—C2—C3 121.76 (16) C11—C16—C15 119.89 (16)
C1—C2—H2 119.1 C7—C16—C15 119.94 (16)
C3—C2—H2 119.1 O1—C17—C1 111.32 (14)
C2—C3—C4 120.58 (17) O1—C17—H17A 109.4
C2—C3—H3 119.7 C1—C17—H17A 109.4
C4—C3—H3 119.7 O1—C17—H17B 109.4
C3—C4—C15 118.45 (15) C1—C17—H17B 109.4
C3—C4—C5 122.80 (16) H17A—C17—H17B 108.0
C15—C4—C5 118.75 (15) O1—C18—C19 110.73 (14)
C6—C5—C4 121.65 (17) O1—C18—H18A 109.5
C6—C5—H5 119.2 C19—C18—H18A 109.5
C4—C5—H5 119.2 O1—C18—H18B 109.5
C5—C6—C7 121.20 (16) C19—C18—H18B 109.5
C5—C6—H6 119.4 H18A—C18—H18B 108.1
C7—C6—H6 119.4 C18—C19—C20 109.88 (15)
C8—C7—C16 118.66 (17) C18—C19—H19A 109.7
C8—C7—C6 122.51 (16) C20—C19—H19A 109.7
C16—C7—C6 118.83 (15) C18—C19—H19B 109.7
C9—C8—C7 120.82 (17) C20—C19—H19B 109.7
C9—C8—H8 119.6 H19A—C19—H19B 108.2
C7—C8—H8 119.6 C21—C20—C19 113.91 (15)
C10—C9—C8 120.69 (16) C21—C20—H20A 108.8
C10—C9—H9 119.7 C19—C20—H20A 108.8
C8—C9—H9 119.7 C21—C20—H20B 108.8
C9—C10—C11 121.02 (18) C19—C20—H20B 108.8
C9—C10—H10 119.5 H20A—C20—H20B 107.7
C11—C10—H10 119.5 C22—C21—C20 113.79 (15)
C10—C11—C16 118.63 (16) C22—C21—H21A 108.8
C10—C11—C12 122.79 (17) C20—C21—H21A 108.8
C16—C11—C12 118.58 (15) C22—C21—H21B 108.8
C13—C12—C11 121.76 (17) C20—C21—H21B 108.8
C13—C12—H12 119.1 H21A—C21—H21B 107.7
C11—C12—H12 119.1 C21—C22—Br1 112.67 (13)
C12—C13—C14 121.56 (16) C21—C22—H22A 109.1
C12—C13—H13 119.2 Br1—C22—H22A 109.1
C14—C13—H13 119.2 C21—C22—H22B 109.1
C1—C14—C15 119.04 (16) Br1—C22—H22B 109.1
C1—C14—C13 122.55 (16) H22A—C22—H22B 107.8
C15—C14—C13 118.41 (15)
C14—C1—C2—C3 −1.0 (3) C3—C4—C15—C16 −179.80 (15)
C17—C1—C2—C3 178.85 (15) C5—C4—C15—C16 0.8 (2)
C1—C2—C3—C4 0.3 (3) C1—C14—C15—C4 −0.4 (2)
C2—C3—C4—C15 0.3 (2) C13—C14—C15—C4 −179.97 (15)
C2—C3—C4—C5 179.71 (16) C1—C14—C15—C16 179.12 (14)
C3—C4—C5—C6 −179.99 (16) C13—C14—C15—C16 −0.5 (2)
C15—C4—C5—C6 −0.6 (2) C10—C11—C16—C7 0.6 (3)
C4—C5—C6—C7 −0.4 (3) C12—C11—C16—C7 −179.87 (15)
C5—C6—C7—C8 −178.58 (16) C10—C11—C16—C15 −178.99 (15)
C5—C6—C7—C16 1.2 (3) C12—C11—C16—C15 0.5 (2)
C16—C7—C8—C9 0.3 (3) C8—C7—C16—C11 −0.8 (2)
C6—C7—C8—C9 −179.91 (17) C6—C7—C16—C11 179.42 (16)
C7—C8—C9—C10 0.3 (3) C8—C7—C16—C15 178.81 (15)
C8—C9—C10—C11 −0.5 (3) C6—C7—C16—C15 −0.9 (2)
C9—C10—C11—C16 0.0 (3) C4—C15—C16—C11 179.61 (15)
C9—C10—C11—C12 −179.44 (17) C14—C15—C16—C11 0.1 (2)
C10—C11—C12—C13 178.72 (17) C4—C15—C16—C7 0.0 (2)
C16—C11—C12—C13 −0.7 (3) C14—C15—C16—C7 −179.54 (14)
C11—C12—C13—C14 0.4 (3) C18—O1—C17—C1 178.43 (13)
C2—C1—C14—C15 1.0 (2) C2—C1—C17—O1 −1.1 (2)
C17—C1—C14—C15 −178.83 (14) C14—C1—C17—O1 178.76 (13)
C2—C1—C14—C13 −179.42 (16) C17—O1—C18—C19 −178.88 (13)
C17—C1—C14—C13 0.7 (2) O1—C18—C19—C20 179.77 (13)
C12—C13—C14—C1 −179.34 (16) C18—C19—C20—C21 −178.27 (14)
C12—C13—C14—C15 0.2 (3) C19—C20—C21—C22 −175.62 (14)
C3—C4—C15—C14 −0.3 (2) C20—C21—C22—Br1 −63.25 (17)
C5—C4—C15—C14 −179.68 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···Br1i 0.94 3.02 3.869 (2) 151

Symmetry codes: (i) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5165).

References

  1. Bell, T. W. & Hext, N. M. (2004). Chem. Soc. Rev. 33, 589–598. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Filby, M. H. & Steed, J. W. (2006). Coord. Chem. Rev. 250, 3200–3218.
  4. Fun, H.-K., Jebas, S. R., Maity, A. C., Das, N. K. & Goswami, S. (2009). Acta Cryst. E65, o891. [DOI] [PMC free article] [PubMed]
  5. Gruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443. [DOI] [PMC free article] [PubMed]
  6. Jacobson, R. (1998). REQAB Private communication to Rigaku Corporation, Tokyo, Japan.
  7. Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xiao, X., Xu, W., Zhang, D., Xu, H., Liu, L. & Zhu, D. (2005). New. J. Chem. pp. 1291–1294.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018253/ng5165sup1.cif

e-67-o1456-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018253/ng5165Isup2.hkl

e-67-o1456-Isup2.hkl (151.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018253/ng5165Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES