Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 25;67(Pt 6):o1523–o1524. doi: 10.1107/S1600536811019027

2-Methyl-5-nitro-1H-benzimidazole monohydrate

Raza Murad Ghalib a, Rokiah Hashim a, Othman Sulaiman a, Ching Kheng Quah b,, Hoong-Kun Fun b,*,§
PMCID: PMC3120310  PMID: 21754885

Abstract

In the title compound, C8H7N3O2·H2O, the 2-methyl-5-nitro-1H-benzimidazole mol­ecule, excluding the methyl H atoms, is approximately planar, with a maximum deviation of 0.137 (1) Å. The crystal structure is stabilized by water mol­ecules via N—H⋯O(water), O(water)—H⋯O and O(water)—H⋯N hydrogen bonds, forming sheets parallel to the (100) plane. A short inter­molecular contact between the benzene and imidazole rings, with a centroid–centroid distance of 3.6419 (10) Å, indicates a π–π inter­action.

Related literature

For general background to and the potential biological activity of benzimidazole derivatives, see: Puratchikody et al. (2008); Tonelli et al. (2010); Shingalapur et al. (2010); Refaat (2010); Lazer et al. (1987). For the preparation of the title compound, see: Umare et al. (2008); Singh & Pathak (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For related structures, see: Eltayeb et al. (2009); Arumugam et al. (2010).graphic file with name e-67-o1523-scheme1.jpg

Experimental

Crystal data

  • C8H7N3O2·H2O

  • M r = 195.18

  • Triclinic, Inline graphic

  • a = 6.9051 (10) Å

  • b = 7.1309 (11) Å

  • c = 10.0653 (15) Å

  • α = 79.421 (3)°

  • β = 73.062 (3)°

  • γ = 67.517 (3)°

  • V = 436.61 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.52 × 0.19 × 0.14 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.942, T max = 0.984

  • 6312 measured reflections

  • 1784 independent reflections

  • 1506 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.115

  • S = 1.06

  • 1784 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811019027/is2711sup1.cif

e-67-o1523-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019027/is2711Isup2.hkl

e-67-o1523-Isup2.hkl (87.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019027/is2711Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1Wi 0.91 (3) 1.84 (2) 2.7347 (18) 170 (2)
O1W—H1W1⋯O2ii 0.831 (19) 2.06 (2) 2.8737 (17) 168.5 (19)
O1W—H2W1⋯N2iii 0.92 (3) 1.86 (3) 2.7808 (18) 177.2 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We would like to acknowledge Universiti Sains Malaysia (USM) for the University Grant 1001/PTEKIND/8140152. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

benzimidazoles are aromatic heterocylic organic compounds of wide biological importance. They are reported as antimicrobial (Puratchikody et al., 2008), antiviral (Tonelli et al., 2010), anticancer (Refaat, 2010), anti-inflammatory (Lazer et al., 1987) and anti-diabetic (Shingalapur et al., 2010) agents.

The molecular structure of the title compound is shown in Fig. 1. The 2-methyl-5-nitro-1H-benzimidazole molecule (O1/O2/N1-N3/C1-C8), excluding methyl H atoms, is almost planar, with a maximum deviation of 0.137 (1) Å for atom O2. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Eltayeb et al., 2009; Arumugam et al., 2010).

The crystal structure (Fig. 2) is stabilized by water molecules via intermolecular N1—H1N1···O1W, O1W—H1W1···O2 and O1W—H2W1···N2 hydrogen bonds to form sheets parallel to the (100) plane. The crystal packing is further consolidated by π–π stacking interactions between the centroids of N1/N2/C2/C3/C8 (Cg1) and C3–C8 (Cg2) rings, with Cg1···Cg2iii distance of 3.6419 (10) Å [symmetry code: (iii) -x, 1 - y, -z].

Experimental

4-Nitro-o-phenylenediamine (1.53 g) was well dissolved in acetic acid and refluxed on a heating mantle for 6 h. The reaction mixture was dried on rotavapor at low pressure to give the solid mass which was then crystallized with alcohol-chloroform (1:1 v/v) mixture to give the brownish crystals of title compound (Umare et al., 2008; Singh & Pathak, 2008), yield 50%, m.p. 496-498 K. Melting point was taken on Thermo Fisher digital melting point apparatus of IA9000 series and is uncorrected.

Refinement

O- and N-bound H atoms were located in a difference Fourier map and refined freely [O—H = 0.83 (2)–0.92 (3) Å, N1—H1N1 = 0.91 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.66 Å from C3 and the deepest hole is located at 0.67 Å from N3.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C8H7N3O2·H2O Z = 2
Mr = 195.18 F(000) = 204
Triclinic, P1 Dx = 1.485 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9051 (10) Å Cell parameters from 2800 reflections
b = 7.1309 (11) Å θ = 3.1–29.8°
c = 10.0653 (15) Å µ = 0.12 mm1
α = 79.421 (3)° T = 100 K
β = 73.062 (3)° Needle, brown
γ = 67.517 (3)° 0.52 × 0.19 × 0.14 mm
V = 436.61 (11) Å3

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 1784 independent reflections
Radiation source: fine-focus sealed tube 1506 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.942, Tmax = 0.984 k = −8→8
6312 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1355P] where P = (Fo2 + 2Fc2)/3
1784 reflections (Δ/σ)max = 0.001
140 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.23733 (19) −0.19984 (17) 0.30176 (12) 0.0281 (3)
O2 0.2283 (2) 0.0307 (2) 0.41865 (11) 0.0350 (3)
N1 0.26105 (19) 0.47231 (19) −0.17804 (12) 0.0176 (3)
N2 0.2160 (2) 0.17912 (19) −0.18388 (12) 0.0190 (3)
N3 0.2355 (2) −0.0294 (2) 0.30934 (13) 0.0220 (3)
C1 0.2320 (3) 0.4036 (2) −0.40419 (15) 0.0248 (4)
H1A 0.1500 0.3383 −0.4285 0.037*
H1B 0.3773 0.3594 −0.4608 0.037*
H1C 0.1669 0.5486 −0.4198 0.037*
C2 0.2349 (2) 0.3487 (2) −0.25514 (15) 0.0186 (3)
C3 0.2308 (2) 0.1917 (2) −0.05118 (14) 0.0167 (3)
C4 0.2203 (2) 0.0559 (2) 0.06588 (15) 0.0183 (3)
H4A 0.1994 −0.0652 0.0652 0.022*
C5 0.2426 (2) 0.1109 (2) 0.18391 (15) 0.0185 (3)
C6 0.2731 (2) 0.2924 (2) 0.19023 (15) 0.0189 (3)
H6A 0.2881 0.3206 0.2726 0.023*
C7 0.2808 (2) 0.4286 (2) 0.07407 (15) 0.0187 (3)
H7A 0.2995 0.5504 0.0760 0.022*
C8 0.2594 (2) 0.3764 (2) −0.04673 (15) 0.0168 (3)
O1W 0.28031 (19) 0.83785 (17) 0.68930 (12) 0.0244 (3)
H1N1 0.265 (3) 0.598 (4) −0.212 (2) 0.036 (5)*
H1W1 0.269 (3) 0.877 (3) 0.608 (2) 0.036 (5)*
H2W1 0.257 (4) 0.949 (4) 0.734 (2) 0.052 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0388 (7) 0.0180 (6) 0.0275 (6) −0.0098 (5) −0.0114 (5) 0.0032 (5)
O2 0.0605 (8) 0.0352 (7) 0.0160 (6) −0.0209 (6) −0.0151 (5) 0.0003 (5)
N1 0.0242 (6) 0.0138 (7) 0.0168 (6) −0.0068 (5) −0.0075 (5) −0.0017 (5)
N2 0.0259 (6) 0.0153 (6) 0.0177 (6) −0.0062 (5) −0.0089 (5) −0.0028 (5)
N3 0.0248 (7) 0.0214 (7) 0.0194 (7) −0.0065 (5) −0.0076 (5) −0.0004 (5)
C1 0.0349 (8) 0.0219 (8) 0.0186 (8) −0.0083 (7) −0.0104 (6) −0.0017 (6)
C2 0.0212 (7) 0.0157 (7) 0.0191 (7) −0.0040 (6) −0.0069 (6) −0.0042 (6)
C3 0.0185 (7) 0.0161 (7) 0.0162 (7) −0.0041 (6) −0.0064 (5) −0.0036 (5)
C4 0.0211 (7) 0.0137 (7) 0.0211 (8) −0.0056 (6) −0.0062 (5) −0.0033 (6)
C5 0.0197 (7) 0.0179 (8) 0.0163 (7) −0.0043 (6) −0.0061 (5) 0.0000 (6)
C6 0.0203 (7) 0.0206 (8) 0.0165 (7) −0.0049 (6) −0.0066 (5) −0.0051 (6)
C7 0.0203 (7) 0.0166 (7) 0.0216 (7) −0.0061 (6) −0.0066 (6) −0.0057 (6)
C8 0.0179 (7) 0.0146 (7) 0.0177 (7) −0.0041 (5) −0.0053 (5) −0.0030 (5)
O1W 0.0428 (7) 0.0166 (6) 0.0191 (6) −0.0125 (5) −0.0127 (5) −0.0008 (5)

Geometric parameters (Å, °)

O1—N3 1.2271 (18) C3—C4 1.384 (2)
O2—N3 1.2334 (17) C3—C8 1.414 (2)
N1—C2 1.3660 (18) C4—C5 1.383 (2)
N1—C8 1.3710 (19) C4—H4A 0.9300
N1—H1N1 0.91 (2) C5—C6 1.404 (2)
N2—C2 1.320 (2) C6—C7 1.378 (2)
N2—C3 1.3905 (18) C6—H6A 0.9300
N3—C5 1.4609 (19) C7—C8 1.3973 (19)
C1—C2 1.483 (2) C7—H7A 0.9300
C1—H1A 0.9600 O1W—H1W1 0.83 (2)
C1—H1B 0.9600 O1W—H2W1 0.92 (3)
C1—H1C 0.9600
C2—N1—C8 107.18 (12) N2—C3—C8 109.57 (13)
C2—N1—H1N1 122.1 (13) C5—C4—C3 116.11 (13)
C8—N1—H1N1 130.4 (13) C5—C4—H4A 121.9
C2—N2—C3 104.83 (12) C3—C4—H4A 121.9
O1—N3—O2 123.11 (13) C4—C5—C6 124.00 (14)
O1—N3—C5 119.20 (13) C4—C5—N3 117.95 (13)
O2—N3—C5 117.69 (13) C6—C5—N3 118.05 (13)
C2—C1—H1A 109.5 C7—C6—C5 119.80 (13)
C2—C1—H1B 109.5 C7—C6—H6A 120.1
H1A—C1—H1B 109.5 C5—C6—H6A 120.1
C2—C1—H1C 109.5 C6—C7—C8 117.33 (14)
H1A—C1—H1C 109.5 C6—C7—H7A 121.3
H1B—C1—H1C 109.5 C8—C7—H7A 121.3
N2—C2—N1 113.13 (13) N1—C8—C7 132.77 (14)
N2—C2—C1 124.88 (13) N1—C8—C3 105.30 (12)
N1—C2—C1 121.98 (13) C7—C8—C3 121.93 (14)
C4—C3—N2 129.61 (13) H1W1—O1W—H2W1 109 (2)
C4—C3—C8 120.82 (13)
C3—N2—C2—N1 −0.04 (16) O2—N3—C5—C6 9.3 (2)
C3—N2—C2—C1 179.09 (13) C4—C5—C6—C7 0.4 (2)
C8—N1—C2—N2 0.05 (16) N3—C5—C6—C7 179.98 (12)
C8—N1—C2—C1 −179.10 (13) C5—C6—C7—C8 −0.6 (2)
C2—N2—C3—C4 179.60 (14) C2—N1—C8—C7 179.43 (15)
C2—N2—C3—C8 0.01 (15) C2—N1—C8—C3 −0.04 (15)
N2—C3—C4—C5 179.45 (13) C6—C7—C8—N1 −179.40 (14)
C8—C3—C4—C5 −1.0 (2) C6—C7—C8—C3 0.0 (2)
C3—C4—C5—C6 0.4 (2) C4—C3—C8—N1 −179.62 (12)
C3—C4—C5—N3 −179.17 (12) N2—C3—C8—N1 0.02 (15)
O1—N3—C5—C4 9.0 (2) C4—C3—C8—C7 0.8 (2)
O2—N3—C5—C4 −171.14 (13) N2—C3—C8—C7 −179.52 (12)
O1—N3—C5—C6 −170.60 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1Wi 0.91 (3) 1.84 (2) 2.7347 (18) 170 (2)
O1W—H1W1···O2ii 0.831 (19) 2.06 (2) 2.8737 (17) 168.5 (19)
O1W—H2W1···N2iii 0.92 (3) 1.86 (3) 2.7808 (18) 177.2 (17)

Symmetry codes: (i) x, y, z−1; (ii) x, y+1, z; (iii) x, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2711).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arumugam, N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2412–o2413. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614. [DOI] [PMC free article] [PubMed]
  6. Lazer, E. S., Matteo, M. R. & Possanza, G. J. (1987). J. Med. Chem. 30, 726–729. [DOI] [PubMed]
  7. Puratchikody, A., Nagalakshmi, G. & Doble, M. (2008). Chem. Pharm. Bull. 56, 273–281. [DOI] [PubMed]
  8. Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shingalapur, R. V., Hosamani, K. M., Keri, R. S. & Hugar, M. H. (2010). Eur. J. Med. Chem. 45, 1753–1759. [DOI] [PubMed]
  11. Singh, J. & Pathak, D. P. (2008). Orient. J. Chem. 24, 175–180.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Tonelli, M., Simone, M., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Paglietti, G., Pricl, S., Giliberti, G., Blois, S., Ibba, C., Sanna, G., Loddo, R. & La Colla, P. (2010). Bioorg. Med. Chem. 18, 2937–2953. [DOI] [PubMed]
  14. Umare, V. D., Ingle, V. N. & Wanare, R. K. (2008). Indian J. Heterocycl. Chem. 17, 253–256.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811019027/is2711sup1.cif

e-67-o1523-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019027/is2711Isup2.hkl

e-67-o1523-Isup2.hkl (87.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811019027/is2711Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES