Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1353. doi: 10.1107/S1600536811016394

3-Carb­oxy-5-(pyridinium-4-yl)benzoate: a redetermination

Shi-Jie Li a, Dong-Liang Miao a, Wen-Dong Song b,*, Shao-Wei Tong a
PMCID: PMC3120316  PMID: 21754747

Abstract

The title compound, C13H9NO4, crystallizes in a zwitterionic form with the pyridine N atom protonated and the carboxyl OH group deprotonated. The benzene and pyridinium rings are inclined with a dihedral angle of 31.42 (14)° between them. A previous report of this stucture claims, we believe incorrectly, that neither of the carboxyl­ate groups is deprotonated [Zhang et al. (2010). Acta Cryst. E66, o2928–o2928]. In the crystal, inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen-bonding inter­actions link adjacent mol­ecules into a three-dimensional supra­molecular network.

Related literature

For coordination polymers based on pyridine­carboxyl­ate ligands, see: Lu & Luck (2003); Ma et al. (2009). For a previous report of the structure of this mol­ecule, which claims that neither of the carboxyl­ate groups is deprotonated, see: Zhang et al. (2010).graphic file with name e-67-o1353-scheme1.jpg

Experimental

Crystal data

  • C13H9NO4

  • M r = 243.21

  • Orthorhombic, Inline graphic

  • a = 15.5702 (13) Å

  • b = 37.377 (3) Å

  • c = 7.2016 (9) Å

  • V = 4191.1 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.38 × 0.15 × 0.07 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.957, T max = 0.992

  • 5456 measured reflections

  • 1024 independent reflections

  • 885 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.142

  • S = 1.09

  • 1024 reflections

  • 164 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016394/sj5133sup1.cif

e-67-o1353-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016394/sj5133Isup2.hkl

e-67-o1353-Isup2.hkl (51KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016394/sj5133Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 1.70 2.562 (4) 175
N1—H1⋯O3i 0.86 2.67 3.252 (4) 126
O1—H1A⋯O4ii 0.82 1.96 2.643 (5) 141
C8—H8⋯O2iii 0.93 2.71 3.632 (5) 171
C10—H10⋯O2iii 0.93 2.58 3.225 (6) 127
C9—H9⋯O1iv 0.93 2.59 3.316 (6) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Science and Technology Department of Guangdong Province Project (grant No. 00087 061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002).

supplementary crystallographic information

Comment

Rigid pyridinecarboxylate ligands have been used extensively to react with metal ions and generate coordination polymers with fascinating structures and properties (Lu & Luck 2003; Ma et al., 2009). As part of an ongoing investigation into coordination polymers based on pyridinecarboxylate ligands, we report here the crystal structure of the title compound.

As shown in Fig. 1, the title compound, C13H9NO4, crystallizes in a zwitterionic form with the pyridine N protonated and one of the carboxyl OH groups deprotonated. The locations of the N and O bound H atoms are clearly shown in a difference Fourier map. A previous report of the same structure in the same space group and with similar unit-cell parameters claims that neither of the carboxylate groups are deprotonated (Zhang et al., 2010). We believe this assignment to be in error. A conformational feature of the molecule is a rigid structure with the benzene and pyridinium rings inclined at an angle of 31.42 (14) ° to one another. In the crystal structure, molecules are interconnected by O—H···O, N—H···O and weak C—H···O hydrogen bonding interactions (Table. 1), generating a three-dimensional supramolecular network (Fig. 2).

Experimental

Commercially available 5-(pyridin-4-yl)isophthalic acid was further purified by repeated recrystallization from anhydrous ethanol. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation of the ethanol solvent at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic hydrogen atoms 0.86 Å, Uiso = 1.2Ueq (N) for the NH group and 0.82 Å, Uiso = 1.5Ueq (O) for the OH group. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound (H atoms not involved in forming hydrogen bonds are omitted for clarity).

Crystal data

C13H9NO4 F(000) = 2016
Mr = 243.21 Dx = 1.542 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 1702 reflections
a = 15.5702 (13) Å θ = 2.5–25.9°
b = 37.377 (3) Å µ = 0.12 mm1
c = 7.2016 (9) Å T = 298 K
V = 4191.1 (7) Å3 Block, colorless
Z = 16 0.38 × 0.15 × 0.07 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 1024 independent reflections
Radiation source: fine-focus sealed tube 885 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 25.2°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −15→18
Tmin = 0.957, Tmax = 0.992 k = −42→44
5456 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0985P)2 + 0.9031P] where P = (Fo2 + 2Fc2)/3
1024 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.21 e Å3
4 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1480 (2) −0.05751 (9) 0.2133 (5) 0.0409 (9)
H1 0.1190 −0.0771 0.2101 0.049*
O1 0.5435 (2) 0.10547 (10) 0.0930 (7) 0.0710 (12)
H1A 0.5939 0.1044 0.0606 0.106*
O2 0.5453 (2) 0.04721 (10) 0.0306 (6) 0.0697 (13)
O3 0.29114 (19) 0.16581 (7) 0.3311 (6) 0.0532 (9)
O4 0.18242 (19) 0.13290 (7) 0.4374 (6) 0.0482 (9)
C1 0.5099 (3) 0.07316 (11) 0.0923 (7) 0.0397 (9)
C2 0.2558 (2) 0.13670 (10) 0.3568 (7) 0.0360 (9)
C3 0.4199 (2) 0.07241 (9) 0.1660 (6) 0.0327 (9)
C4 0.3802 (2) 0.10341 (10) 0.2268 (6) 0.0328 (9)
H4A 0.4102 0.1249 0.2255 0.039*
C5 0.2964 (2) 0.10264 (10) 0.2892 (6) 0.0314 (9)
C6 0.2511 (2) 0.07076 (10) 0.2856 (6) 0.0314 (9)
H6 0.1940 0.0704 0.3236 0.038*
C7 0.2898 (2) 0.03945 (10) 0.2260 (6) 0.0315 (9)
C8 0.3750 (2) 0.04014 (10) 0.1687 (6) 0.0325 (9)
H8 0.4020 0.0191 0.1321 0.039*
C9 0.2321 (3) −0.05851 (11) 0.2449 (7) 0.0422 (10)
H9 0.2589 −0.0804 0.2644 0.051*
C10 0.2804 (3) −0.02736 (10) 0.2493 (7) 0.0376 (10)
H10 0.3394 −0.0285 0.2688 0.045*
C11 0.2406 (2) 0.00546 (10) 0.2248 (6) 0.0324 (9)
C12 0.1522 (3) 0.00546 (10) 0.1922 (7) 0.0399 (10)
H12 0.1229 0.0269 0.1745 0.048*
C13 0.1090 (3) −0.02658 (11) 0.1866 (7) 0.0438 (11)
H13 0.0502 −0.0265 0.1632 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0402 (19) 0.0294 (16) 0.053 (2) −0.0098 (14) 0.0033 (17) −0.0067 (17)
O1 0.057 (2) 0.0575 (15) 0.098 (3) −0.0119 (15) 0.024 (2) −0.006 (2)
O2 0.052 (2) 0.0601 (15) 0.097 (4) 0.0054 (14) 0.018 (2) −0.010 (2)
O3 0.0488 (18) 0.0275 (14) 0.083 (3) −0.0033 (12) 0.0095 (17) −0.0067 (17)
O4 0.0399 (16) 0.0334 (15) 0.071 (2) 0.0014 (12) 0.0126 (16) −0.0045 (15)
C1 0.0301 (19) 0.0442 (18) 0.045 (2) 0.0001 (14) 0.0017 (19) 0.0004 (18)
C2 0.0335 (19) 0.028 (2) 0.046 (2) 0.0031 (15) −0.0038 (18) −0.0062 (18)
C3 0.0320 (19) 0.0282 (18) 0.038 (2) −0.0014 (14) −0.0008 (18) 0.0009 (17)
C4 0.0294 (19) 0.0310 (18) 0.038 (2) −0.0053 (14) 0.0011 (16) 0.0001 (17)
C5 0.0300 (19) 0.0292 (18) 0.035 (2) 0.0014 (14) −0.0026 (17) −0.0039 (16)
C6 0.0274 (18) 0.0298 (19) 0.037 (2) −0.0010 (14) 0.0009 (16) −0.0012 (16)
C7 0.0291 (19) 0.0319 (19) 0.033 (2) −0.0023 (14) 0.0006 (17) 0.0007 (18)
C8 0.032 (2) 0.0280 (18) 0.037 (2) 0.0021 (15) 0.0010 (18) −0.0013 (16)
C9 0.048 (2) 0.0270 (19) 0.052 (3) 0.0011 (17) 0.000 (2) −0.0019 (18)
C10 0.030 (2) 0.0340 (19) 0.049 (3) 0.0004 (15) 0.0029 (19) −0.0046 (19)
C11 0.0336 (19) 0.028 (2) 0.035 (2) −0.0015 (15) 0.0038 (17) −0.0027 (17)
C12 0.032 (2) 0.0314 (19) 0.056 (3) 0.0017 (15) 0.0026 (19) −0.003 (2)
C13 0.036 (2) 0.038 (2) 0.057 (3) −0.0054 (17) −0.002 (2) −0.005 (2)

Geometric parameters (Å, °)

N1—C13 1.320 (5) C5—C6 1.385 (5)
N1—C9 1.329 (5) C6—C7 1.385 (5)
N1—H1 0.8600 C6—H6 0.9300
O1—C1 1.316 (5) C7—C8 1.389 (5)
O1—H1A 0.8200 C7—C11 1.484 (5)
O2—C1 1.201 (5) C8—H8 0.9300
O3—C2 1.233 (5) C9—C10 1.386 (5)
O4—C2 1.290 (5) C9—H9 0.9300
C1—C3 1.498 (5) C10—C11 1.386 (6)
C2—C5 1.502 (5) C10—H10 0.9300
C3—C4 1.385 (5) C11—C12 1.397 (6)
C3—C8 1.394 (5) C12—C13 1.374 (6)
C4—C5 1.379 (5) C12—H12 0.9300
C4—H4A 0.9300 C13—H13 0.9300
C13—N1—C9 120.2 (3) C6—C7—C8 119.5 (3)
C13—N1—H1 119.9 C6—C7—C11 120.0 (3)
C9—N1—H1 119.9 C8—C7—C11 120.5 (3)
C1—O1—H1A 109.5 C7—C8—C3 119.9 (3)
O2—C1—O1 124.0 (4) C7—C8—H8 120.0
O2—C1—C3 123.1 (4) C3—C8—H8 120.0
O1—C1—C3 112.8 (4) N1—C9—C10 121.0 (4)
O3—C2—O4 124.0 (3) N1—C9—H9 119.5
O3—C2—C5 120.8 (4) C10—C9—H9 119.5
O4—C2—C5 115.2 (3) C11—C10—C9 119.9 (4)
C4—C3—C8 119.7 (3) C11—C10—H10 120.1
C4—C3—C1 120.9 (3) C9—C10—H10 120.1
C8—C3—C1 119.3 (3) C10—C11—C12 117.5 (4)
C5—C4—C3 120.5 (3) C10—C11—C7 121.8 (3)
C5—C4—H4A 119.7 C12—C11—C7 120.7 (3)
C3—C4—H4A 119.7 C13—C12—C11 119.2 (4)
C4—C5—C6 119.6 (3) C13—C12—H12 120.4
C4—C5—C2 119.1 (3) C11—C12—H12 120.4
C6—C5—C2 121.4 (3) N1—C13—C12 122.2 (4)
C7—C6—C5 120.7 (3) N1—C13—H13 118.9
C7—C6—H6 119.6 C12—C13—H13 118.9
C5—C6—H6 119.6
O2—C1—C3—C4 −176.6 (5) C6—C7—C8—C3 −2.0 (6)
O1—C1—C3—C4 −0.2 (6) C11—C7—C8—C3 178.4 (4)
O2—C1—C3—C8 1.7 (7) C4—C3—C8—C7 2.2 (6)
O1—C1—C3—C8 178.1 (4) C1—C3—C8—C7 −176.1 (4)
C8—C3—C4—C5 −0.3 (6) C13—N1—C9—C10 −0.4 (7)
C1—C3—C4—C5 178.0 (4) N1—C9—C10—C11 1.5 (7)
C3—C4—C5—C6 −1.9 (6) C9—C10—C11—C12 −1.3 (7)
C3—C4—C5—C2 179.1 (4) C9—C10—C11—C7 −179.2 (4)
O3—C2—C5—C4 11.1 (6) C6—C7—C11—C10 −150.4 (4)
O4—C2—C5—C4 −170.3 (4) C8—C7—C11—C10 29.3 (6)
O3—C2—C5—C6 −167.9 (4) C6—C7—C11—C12 31.8 (6)
O4—C2—C5—C6 10.7 (6) C8—C7—C11—C12 −148.5 (4)
C4—C5—C6—C7 2.2 (6) C10—C11—C12—C13 0.2 (7)
C2—C5—C6—C7 −178.8 (4) C7—C11—C12—C13 178.1 (4)
C5—C6—C7—C8 −0.2 (7) C9—N1—C13—C12 −0.7 (8)
C5—C6—C7—C11 179.4 (4) C11—C12—C13—N1 0.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4i 0.86 1.70 2.562 (4) 175
N1—H1···O3i 0.86 2.67 3.252 (4) 126
O1—H1A···O4ii 0.82 1.96 2.643 (5) 141
C8—H8···O2iii 0.93 2.71 3.632 (5) 171
C10—H10···O2iii 0.93 2.58 3.225 (6) 127
C9—H9···O1iv 0.93 2.59 3.316 (6) 135

Symmetry codes: (i) −x+1/4, y−1/4, z−1/4; (ii) x+1/2, y, z−1/2; (iii) −x+1, −y, z; (iv) −x+3/4, y−1/4, z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5133).

References

  1. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lu, T. B. & Luck, R. L. (2003). Inorg. Chim. Acta, 351, 345–355.
  3. Ma, D. Y., Liu, H. L. & Li, Y. W. (2009). Inorg. Chem. Commun. 12, 883–886.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Zhang, Y.-F., Zhang, Q.-F., Jin, J., Sun, D.-Z. & Wang, D.-Q. (2010). Acta Cryst. E66, o2928. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016394/sj5133sup1.cif

e-67-o1353-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016394/sj5133Isup2.hkl

e-67-o1353-Isup2.hkl (51KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016394/sj5133Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES