Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1329. doi: 10.1107/S1600536811016734

2-Chloro-6-fluoro­benzoic acid

Richard Betz a,*, Thomas Gerber a
PMCID: PMC3120372  PMID: 21754726

Abstract

The title compound, C7H4ClFO2, is a twofold halogenated derivative of benzoic acid. The C—C—C angles within the aromatic moiety cover a range 116.11 (14)–123.96 (15)°, with the maximum and the minimum value next to each other. In the crystal, O—H⋯O hydrogen bonds form carb­oxy­lic acid dimers, which are further connected by C—H⋯F contacts into undulating sheets perpendicular to the a axis.

Related literature

For the crystal structure of benzoic acid (applying neutron radiation), see: Wilson et al. (1996). For the crystal structure of ortho-fluoro­benzoic acid, see: Krausse & Dunken (1966) and of ortho-chloro­benzoic acid, see: Ferguson & Sim (1961); Polito et al. (2008). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-67-o1329-scheme1.jpg

Experimental

Crystal data

  • C7H4ClFO2

  • M r = 174.55

  • Monoclinic, Inline graphic

  • a = 3.7655 (2) Å

  • b = 13.9660 (7) Å

  • c = 13.2300 (7) Å

  • β = 98.034 (3)°

  • V = 688.92 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 200 K

  • 0.51 × 0.19 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 11312 measured reflections

  • 1671 independent reflections

  • 1267 reflections with I > 2σ(I)

  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.081

  • S = 1.02

  • 1671 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016734/gw2099sup1.cif

e-67-o1329-sup1.cif (12.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016734/gw2099Isup2.hkl

e-67-o1329-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016734/gw2099Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.81 2.6436 (17) 172
C5—H5⋯F1ii 0.95 2.46 3.175 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Mrs Wilma Nelson for helpful discussions.

supplementary crystallographic information

Comment

Benzoic acid has found widespread use as a ligand in coordination chemistry for a variety of transition metals and elements from the s- and p-block of the periodic system of the elements. It can act as a neutral or – upon deprotonation – an anionic ligand and serve as mono- or bidentate ligand. By varying the substituents on the phenyl moiety, the acidity of the carboxylic acid group can be fine-tuned. Particular interest rests in benzoic acid derivatives showing an asymmetric pattern of substituents on the aromatic moiety due to different possible orientations of the ligand in coordination compounds and the possible formation of stereoisomeric products. At the beginning of a comprehensive study aimed at rationalizing the coordination behaviour of various benzoic acid derivatives towards a number of transition metals in dependence of the pH value of the reaction batches it seemed interesting to determine the crystal structure of the title compound to enable comparative studies.

C–C–C angles within the phenyl ring span a range of 116.11 (14) ° to 123.96 (15) ° with the smallest angle found on the C-atom bearing the carboxylic acid group. The biggest angle is found on the fluorine-bonded C-atom and thus directly adjacent to the smallest one (Fig. 1).

Possibly due to steric factors, the carboxylic acid group is not in plane with the phenyl ring. The least-squares plane defined by its C-atom and O-atoms encloses an angle of 47.83 (6) ° with the least-squares plane defined by the C-atoms of the carbocycle and the halogen-atoms.

In the crystal structure hydrogen bonds between the OH-group and the carbonylic O-atom of the carboxylic acid group give rise to the formation of dimeric units. These units are further connected by C–F···H contacts (whose ranges fall by more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms) to wave-like sheets perpendicular to the crystallographic a axis. The hydrogen atom involved in the latter contacts is present in para-position to the carboxylic acid group on the aromatic carbocycle (Fig. 2). In terms of graph-set analysis, the descriptor for the hydrogen bonds on the unitary level is R22(8) while the C–F···H contacts necessitate a C11(5) descriptor on the same level. No π-stacking is observed in the crystal structure.

The packing of the title compound is shown in Figure 3.

Experimental

The compound was obtained commercially (fluorochem). Crystals suitable for X-ray diffraction were obtained upon slow cooling of a hot aqueous solution of the compound.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the carboxylic acid group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Hydrogen bonds (blue dashed lines) and intermolecular C–F···H contacts (yellow dashed lines), viewed along [-1 0 0]. Symmetry operators: ix, -y + 1/2, z + 1/2; iix, -y + 1/2, z - 1/2; iii -x + 1, -y + 1, -z.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C7H4ClFO2 F(000) = 352
Mr = 174.55 Dx = 1.683 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4834 reflections
a = 3.7655 (2) Å θ = 2.9–27.9°
b = 13.9660 (7) Å µ = 0.51 mm1
c = 13.2300 (7) Å T = 200 K
β = 98.034 (3)° Needle, colourless
V = 688.92 (6) Å3 0.51 × 0.19 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1267 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.081
graphite θmax = 28.3°, θmin = 3.1°
φ and ω scans h = −4→4
11312 measured reflections k = −18→18
1671 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.237P] where P = (Fo2 + 2Fc2)/3
1671 reflections (Δ/σ)max = 0.001
101 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.21 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.56510 (12) 0.54455 (3) 0.33109 (3) 0.03809 (14)
F1 0.8294 (3) 0.24457 (7) 0.13846 (8) 0.0484 (3)
O1 0.4025 (4) 0.39103 (9) 0.06067 (9) 0.0441 (3)
H1 0.3547 0.4253 0.0084 0.066*
O2 0.7380 (4) 0.51658 (9) 0.11476 (9) 0.0418 (3)
C1 0.6158 (4) 0.43686 (11) 0.12879 (12) 0.0289 (3)
C2 0.7161 (4) 0.38510 (11) 0.22715 (11) 0.0254 (3)
C3 0.7186 (4) 0.42864 (11) 0.32219 (12) 0.0266 (3)
C4 0.8310 (5) 0.37956 (13) 0.41170 (13) 0.0359 (4)
H4 0.8276 0.4100 0.4758 0.043*
C5 0.9477 (5) 0.28638 (14) 0.40775 (13) 0.0391 (4)
H5 1.0304 0.2534 0.4694 0.047*
C6 0.9461 (5) 0.24039 (13) 0.31564 (14) 0.0362 (4)
H6 1.0253 0.1760 0.3127 0.043*
C7 0.8270 (4) 0.29017 (12) 0.22850 (12) 0.0311 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0461 (3) 0.0291 (2) 0.0393 (2) 0.00636 (18) 0.00668 (17) −0.00432 (17)
F1 0.0872 (9) 0.0278 (5) 0.0328 (6) 0.0057 (5) 0.0178 (5) −0.0044 (4)
O1 0.0638 (9) 0.0349 (7) 0.0284 (6) −0.0170 (6) −0.0120 (6) 0.0065 (5)
O2 0.0631 (8) 0.0291 (6) 0.0295 (6) −0.0149 (6) −0.0066 (5) 0.0066 (5)
C1 0.0364 (8) 0.0252 (8) 0.0241 (8) −0.0017 (6) 0.0006 (6) 0.0004 (6)
C2 0.0282 (8) 0.0244 (7) 0.0231 (7) −0.0018 (6) 0.0021 (6) 0.0028 (6)
C3 0.0255 (7) 0.0256 (8) 0.0285 (8) 0.0010 (6) 0.0036 (6) −0.0006 (6)
C4 0.0411 (9) 0.0422 (10) 0.0239 (8) 0.0015 (8) 0.0033 (7) 0.0017 (7)
C5 0.0442 (10) 0.0412 (10) 0.0315 (9) 0.0074 (8) 0.0039 (7) 0.0133 (7)
C6 0.0417 (9) 0.0274 (9) 0.0407 (10) 0.0078 (7) 0.0096 (7) 0.0093 (7)
C7 0.0399 (9) 0.0272 (8) 0.0274 (8) −0.0010 (7) 0.0093 (7) 0.0007 (6)

Geometric parameters (Å, °)

Cl1—C3 1.7285 (16) C3—C4 1.383 (2)
F1—C7 1.3519 (18) C4—C5 1.377 (3)
O1—C1 1.2902 (19) C4—H4 0.9500
O1—H1 0.8400 C5—C6 1.377 (3)
O2—C1 1.2287 (19) C5—H5 0.9500
C1—C2 1.490 (2) C6—C7 1.367 (2)
C2—C7 1.389 (2) C6—H6 0.9500
C2—C3 1.395 (2)
C1—O1—H1 109.5 C5—C4—H4 120.1
O2—C1—O1 123.63 (14) C3—C4—H4 120.1
O2—C1—C2 121.11 (14) C4—C5—C6 120.84 (16)
O1—C1—C2 115.24 (13) C4—C5—H5 119.6
C7—C2—C3 116.11 (14) C6—C5—H5 119.6
C7—C2—C1 120.86 (13) C7—C6—C5 118.00 (16)
C3—C2—C1 122.98 (14) C7—C6—H6 121.0
C4—C3—C2 121.23 (15) C5—C6—H6 121.0
C4—C3—Cl1 118.11 (12) F1—C7—C6 117.50 (15)
C2—C3—Cl1 120.62 (12) F1—C7—C2 118.51 (14)
C5—C4—C3 119.81 (16) C6—C7—C2 123.96 (15)
O2—C1—C2—C7 −131.11 (17) Cl1—C3—C4—C5 178.59 (14)
O1—C1—C2—C7 47.3 (2) C3—C4—C5—C6 −1.6 (3)
O2—C1—C2—C3 46.4 (2) C4—C5—C6—C7 0.3 (3)
O1—C1—C2—C3 −135.22 (17) C5—C6—C7—F1 179.46 (15)
C7—C2—C3—C4 0.9 (2) C5—C6—C7—C2 1.7 (3)
C1—C2—C3—C4 −176.64 (15) C3—C2—C7—F1 179.95 (14)
C7—C2—C3—Cl1 −176.68 (12) C1—C2—C7—F1 −2.4 (2)
C1—C2—C3—Cl1 5.7 (2) C3—C2—C7—C6 −2.3 (2)
C2—C3—C4—C5 0.9 (3) C1—C2—C7—C6 175.35 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.81 2.6436 (17) 172
C5—H5···F1ii 0.95 2.46 3.175 (2) 132

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2099).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Ferguson, G. & Sim, G. A. (1961). Acta Cryst. 14, 1262–1270.
  6. Krausse, J. & Dunken, H. (1966). Acta Cryst. 20, 67–73.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Polito, M., D’Oria, E., Maini, L., Karamertzanis, P. G., Grepioni, F., Braga, D. & Price, S. L. (2008). CrystEngComm, 10, 1848–1854.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. pp. 5051–5057.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016734/gw2099sup1.cif

e-67-o1329-sup1.cif (12.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016734/gw2099Isup2.hkl

e-67-o1329-Isup2.hkl (82.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016734/gw2099Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES