Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 25;67(Pt 6):o1494. doi: 10.1107/S1600536811018757

Methyl N-(4-nitro­phen­yl)carbamate

Qun Cai a, Zhuan Fei a, Lin Li a,*
PMCID: PMC3120399  PMID: 21754862

Abstract

In the title mol­ecule, C8H8N2O4, the nitro and meth­oxy­carbonyl groups are twisted from the plane of aromatic ring by 5.1 (1) and 6.2 (1)°, respectively. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules related by translation along the b axis into chains. Weak inter­molecular C—H⋯O inter­actions link further these chains into sheets parallel to the bc plane.

Related literature

For the preparation of the title compound, see: Wilshire (1990). For a related structure, see: Yakimanski et al. (1997).graphic file with name e-67-o1494-scheme1.jpg

Experimental

Crystal data

  • C8H8N2O4

  • M r = 196.16

  • Triclinic, Inline graphic

  • a = 7.4269 (11) Å

  • b = 8.1003 (12) Å

  • c = 8.5376 (12) Å

  • α = 101.634 (2)°

  • β = 97.914 (2)°

  • γ = 116.660 (2)°

  • V = 434.04 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.04 mm

Data collection

  • Bruker SMART APEX diffractometer

  • 4507 measured reflections

  • 1686 independent reflections

  • 1539 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.162

  • S = 1.26

  • 1686 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018757/cv5074sup1.cif

e-67-o1494-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018757/cv5074Isup2.hkl

e-67-o1494-Isup2.hkl (83KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018757/cv5074Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.57 3.471 (3) 163
C1—H1B⋯O4ii 0.96 2.53 3.324 (4) 140
N1—H1⋯O3iii 0.82 (3) 2.20 (4) 3.016 (3) 170 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author are grateful to the Central China Normal University for financial support and thank Dr Xiang-Gao Meng for the X-ray data collection.

supplementary crystallographic information

Comment

4-Nitrophenylhexyl derivatives are studied in the crystal engineering and design of nonlinear optical (NLO) materials (Yakimanski et al., 1997). Herewith we report the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in 4-nitrophenyl-hexyl-urethane (Yakimanski et al., 1997). The nitro and methoxycarbonyl groups are twisted from the plane of aromatic ring at 5.1 (1) and 6.2 (1)°, respectively. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules related by translation along axis b<ι> into chains. Weak intermolecular C—H···O interactions (Table 1) link further these chains into sheets parallel to bc<ι> plane.

Experimental

The title compound was synthesized according to Wilshire (1990). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a chloroform-methanol (2:1) solution of the title compound under 293 K.

Refinement

C-bound H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C). Atom H1 was located on difference map and isotropically refined.

Figures

Fig. 1.

Fig. 1.

A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C8H8N2O4 Z = 2
Mr = 196.16 F(000) = 204
Triclinic, P1 Dx = 1.501 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4269 (11) Å Cell parameters from 2193 reflections
b = 8.1003 (12) Å θ = 2.5–28.2°
c = 8.5376 (12) Å µ = 0.12 mm1
α = 101.634 (2)° T = 298 K
β = 97.914 (2)° Block, yellow
γ = 116.660 (2)° 0.40 × 0.30 × 0.04 mm
V = 434.04 (11) Å3

Data collection

Bruker SMART APEX diffractometer 1539 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.051
graphite θmax = 26.0°, θmin = 2.5°
φ and ω scans h = −9→9
4507 measured reflections k = −9→9
1686 independent reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.047P)2 + 0.2842P] where P = (Fo2 + 2Fc2)/3
1686 reflections (Δ/σ)max < 0.001
132 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2798 (6) 0.1171 (5) 0.4095 (4) 0.0645 (10)
H1A 0.4024 0.2283 0.4846 0.097*
H1B 0.2871 0.0023 0.4122 0.097*
H1C 0.1582 0.1095 0.4419 0.097*
C2 0.2591 (4) 0.2904 (4) 0.2229 (3) 0.0400 (6)
C3 0.2433 (4) 0.4234 (4) −0.0116 (3) 0.0351 (6)
C4 0.2670 (4) 0.5997 (4) 0.0750 (3) 0.0391 (6)
H4 0.2853 0.6318 0.1891 0.047*
C5 0.2633 (4) 0.7260 (4) −0.0091 (3) 0.0399 (6)
H5 0.2796 0.8445 0.0481 0.048*
C6 0.2355 (4) 0.6774 (4) −0.1782 (3) 0.0377 (6)
C7 0.2141 (5) 0.5042 (4) −0.2666 (3) 0.0427 (7)
H7 0.1979 0.4739 −0.3804 0.051*
C8 0.2173 (4) 0.3786 (4) −0.1826 (3) 0.0415 (7)
H8 0.2018 0.2607 −0.2405 0.050*
N2 0.2288 (4) 0.8111 (4) −0.2670 (3) 0.0479 (6)
N1 0.2450 (4) 0.2846 (4) 0.0624 (3) 0.0436 (6)
O1 0.2673 (4) 0.1340 (3) 0.2437 (2) 0.0538 (6)
O2 0.2635 (4) 0.4136 (3) 0.3310 (2) 0.0545 (6)
O3 0.2327 (4) 0.9584 (3) −0.1911 (3) 0.0695 (7)
O4 0.2176 (4) 0.7718 (4) −0.4139 (3) 0.0733 (8)
H1 0.235 (5) 0.187 (5) 0.001 (4) 0.059 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.089 (3) 0.073 (2) 0.0476 (18) 0.045 (2) 0.0229 (17) 0.0351 (17)
C2 0.0426 (16) 0.0416 (16) 0.0391 (14) 0.0211 (13) 0.0138 (12) 0.0152 (13)
C3 0.0356 (14) 0.0342 (14) 0.0388 (14) 0.0188 (12) 0.0108 (11) 0.0128 (11)
C4 0.0481 (16) 0.0400 (15) 0.0286 (12) 0.0224 (13) 0.0106 (11) 0.0064 (11)
C5 0.0458 (16) 0.0310 (14) 0.0441 (15) 0.0224 (13) 0.0101 (12) 0.0061 (11)
C6 0.0362 (14) 0.0361 (15) 0.0429 (14) 0.0185 (12) 0.0089 (11) 0.0150 (12)
C7 0.0567 (18) 0.0455 (17) 0.0338 (14) 0.0307 (15) 0.0129 (12) 0.0129 (12)
C8 0.0562 (18) 0.0350 (15) 0.0365 (14) 0.0271 (14) 0.0122 (12) 0.0051 (11)
N2 0.0539 (15) 0.0430 (15) 0.0545 (15) 0.0282 (13) 0.0137 (12) 0.0194 (12)
N1 0.0675 (17) 0.0398 (14) 0.0324 (12) 0.0334 (13) 0.0155 (11) 0.0101 (10)
O1 0.0864 (16) 0.0512 (13) 0.0429 (11) 0.0426 (12) 0.0242 (11) 0.0254 (10)
O2 0.0838 (16) 0.0558 (13) 0.0366 (11) 0.0421 (12) 0.0224 (10) 0.0157 (10)
O3 0.106 (2) 0.0434 (13) 0.0709 (16) 0.0476 (14) 0.0179 (14) 0.0174 (11)
O4 0.120 (2) 0.0758 (17) 0.0552 (15) 0.0635 (17) 0.0334 (14) 0.0378 (13)

Geometric parameters (Å, °)

C1—O1 1.444 (3) C4—H4 0.9300
C1—H1A 0.9600 C5—C6 1.378 (4)
C1—H1B 0.9600 C5—H5 0.9300
C1—H1C 0.9600 C6—C7 1.379 (4)
C2—O2 1.200 (3) C6—N2 1.456 (3)
C2—O1 1.340 (3) C7—C8 1.364 (4)
C2—N1 1.350 (3) C7—H7 0.9300
C3—C4 1.390 (4) C8—H8 0.9300
C3—C8 1.394 (4) N2—O4 1.211 (3)
C3—N1 1.400 (3) N2—O3 1.223 (3)
C4—C5 1.370 (4) N1—H1 0.82 (3)
O1—C1—H1A 109.5 C6—C5—H5 120.0
O1—C1—H1B 109.5 C5—C6—C7 121.6 (2)
H1A—C1—H1B 109.5 C5—C6—N2 119.7 (2)
O1—C1—H1C 109.5 C7—C6—N2 118.7 (2)
H1A—C1—H1C 109.5 C8—C7—C6 118.3 (2)
H1B—C1—H1C 109.5 C8—C7—H7 120.9
O2—C2—O1 124.7 (3) C6—C7—H7 120.9
O2—C2—N1 126.5 (3) C7—C8—C3 121.3 (2)
O1—C2—N1 108.8 (2) C7—C8—H8 119.3
C4—C3—C8 119.3 (2) C3—C8—H8 119.3
C4—C3—N1 124.0 (2) O4—N2—O3 122.3 (3)
C8—C3—N1 116.7 (2) O4—N2—C6 118.9 (2)
C5—C4—C3 119.5 (2) O3—N2—C6 118.9 (2)
C5—C4—H4 120.3 C2—N1—C3 127.9 (2)
C3—C4—H4 120.3 C2—N1—H1 116 (2)
C4—C5—C6 120.0 (2) C3—N1—H1 116 (2)
C4—C5—H5 120.0 C2—O1—C1 115.7 (2)
C8—C3—C4—C5 0.4 (4) C5—C6—N2—O4 175.4 (3)
N1—C3—C4—C5 179.9 (3) C7—C6—N2—O4 −4.5 (4)
C3—C4—C5—C6 0.2 (4) C5—C6—N2—O3 −5.3 (4)
C4—C5—C6—C7 −1.0 (4) C7—C6—N2—O3 174.8 (3)
C4—C5—C6—N2 179.2 (2) O2—C2—N1—C3 3.5 (5)
C5—C6—C7—C8 1.2 (4) O1—C2—N1—C3 −176.5 (3)
N2—C6—C7—C8 −179.0 (2) C4—C3—N1—C2 3.4 (5)
C6—C7—C8—C3 −0.6 (4) C8—C3—N1—C2 −177.0 (3)
C4—C3—C8—C7 −0.2 (4) O2—C2—O1—C1 0.8 (4)
N1—C3—C8—C7 −179.8 (3) N1—C2—O1—C1 −179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O2i 0.93 2.57 3.471 (3) 163
C4—H4···O2 0.93 2.30 2.892 (3) 121
C1—H1B···O4ii 0.96 2.53 3.324 (4) 140
N1—H1···O3iii 0.82 (3) 2.20 (4) 3.016 (3) 170 (3)

Symmetry codes: (i) x, y, z−1; (ii) x, y−1, z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5074).

References

  1. Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wilshire, J. F. K. (1990). Aust. J. Chem. 43, 1817–1826.
  5. Yakimanski, A. V., Kolb, U., Matveeva, G. N., Voigt-Martin, I. G. & Tenkovtsev, A. V. (1997). Acta Cryst. A53, 603–614.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018757/cv5074sup1.cif

e-67-o1494-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018757/cv5074Isup2.hkl

e-67-o1494-Isup2.hkl (83KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018757/cv5074Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES