Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1303. doi: 10.1107/S1600536811015960

2-(4-Meth­oxy-2-methyl­anilino)-1,2-diphenyl­ethanone

Hakan Arslan a,b,*, Oztekin Algul c, Selin Zirek c, Ozden Tari c, Aydın Demircan d, Kenneth I Hardcastle a
PMCID: PMC3120400  PMID: 21754706

Abstract

The title compound, C22H21NO2, was synthesized from 4-meth­oxy-2-methyl­aniline and 2-hy­droxy-1,2-diphenyl­ethanone. In the title compound, the C—C—C—N—C backbone adopts an all-trans conformation. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen-bond inter­actions.

Related literature

For the synthesis and similar structures, see: Au & Tafeenko (1986, 1987); Batsanov et al., (2006). For general background to these structures, see: Batsanov et al. (2006); Abdulla et al. (1985). For bond-length data, see: Allen et al. (1987). For geometrical analysis, see: Bruno et al. (2002).graphic file with name e-67-o1303-scheme1.jpg

Experimental

Crystal data

  • C22H21NO2

  • M r = 331.40

  • Monoclinic, Inline graphic

  • a = 12.570 (12) Å

  • b = 8.009 (8) Å

  • c = 18.091 (17) Å

  • β = 100.544 (15)°

  • V = 1791 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.21 × 0.19 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.984, T max = 0.988

  • 28799 measured reflections

  • 4122 independent reflections

  • 2935 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.112

  • S = 1.05

  • 4122 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2, publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015960/hg5030sup1.cif

e-67-o1303-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015960/hg5030Isup2.hkl

e-67-o1303-Isup2.hkl (202KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015960/hg5030Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.95 2.48 3.352 (4) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Mersin University Research Fund [Project No. BAP-SBE FK (SZ) 2008–8 YL].

supplementary crystallographic information

Comment

A few 1-arylanilinoethanone derivatives have been structurally charactized because of their importance in synthesis or because of their interesting charge-transfer properties (Abdulla et al., 1985). We found only four structurally similar compounds (Au & Tafeenko, 1987; Au & Tafeenko, 1986; Batsanov et al., 2006) in the Cambridge Structural Database (CSD CONQUEST 1.11, B4; Bruno et al., 2002).

Compound I was synthesized by the HCl acid-catalyzed reaction of a benzoin derivative to 4-methoxy-2-methylaniline (Scheme 1) resulting in the title compound, 2-((4-methoxy-2-methylphenyl)amino)-1,2-diphenylethanone, I, Figure 1, its structure was determined by X-ray crystallography.

The molecular structure of the title compound contains two phenyl rings and one substituted aniline ring connected by a –C(O)—C– linker. The dihedral angle between the two phenyl rings is 87.78 (7) ° and the dihedral angle between the substitute aniline and phenyl rings are 55.30 (7) and 84.57 (7) °, respectively. In adition, in the title compound, the C2—C1—C8—N1—C15 backbone adopts an all-trans conformation (Au & Tafeenko, 1987; Au & Tafeenko, 1986; Batsanov et al., 2006).

The C—N bond lengths C8—N1 and C15—N1 are shorter than the normal C—N single-bond length of about 1.48 Å. The shortening of these C—N bonds reveals the effects of some conjugation in this part of the molecule. All other bond lengths fall within the expected ranges (Allen et al., 1987).

Intramolecular hydrogen bonding N1–H1A···O1 with N–H 0.88 Å, H···O 2.22 Å, N–H···O 107 ° results in the formation of a five membered ring in the O1—C1—C8—N1–H1A plane. The crystal packing is dominated by weak intermolecular C11—H11A···O1 (x, 1 + y, z) hydrogen bonds, with H···O = 2.48 Å and a C—H···O angle of 153 ° (Figure 2).

Experimental

A mixture of 4-methoxy-2-methylaniline (15 mmol), 2-hydroxy-1,2-diphenylethanone (5 mmol) and 1 ml conc. HCl in 20 ml of ethanol were refluxed for 5 h (Figure 3). After reaction was complete, the mixture was allowed to cool to room temperature, poured into cold water (20 ml) and finally extracted with CH2Cl2 (3x15 ml). The organic layer was dried over magnesium sulfate and the solvent removed under reduced pressure to yield a crude product that was purified by recrystallization in ethyl acetate. 2-((4-methoxy-2-methylphenyl)amino)-1,2-diphenylethanone: Yield: 1.20 g, 46%. M.p.: 110–112 °C. 1H NMR (DMSO-d6) δ: 8.18–8.16 (d, 2H, Ar—H (C3, C7)), 7.62 (t, 1H, Ar—H (C5)), 7.56–7.49 (m, 4H, Ar—H (C4, C6, C11, C13)), 7.30–7.26 (m, 2H, Ar—H (C10, C14)), 7.16 (t, 1H, Ar—H (C12)), 6.70–6.68 (d, J=4.8 Hz, 1H, Ar—H (C19)), 6.67 (s, 1H, Ar—H (C17)), 6.57–6.55 (d, J=8 Hz, 1H, Ar—H (C20)), 6.46–6.44 (d, J=8 Hz, 1H, Ar—H (C8)), 5.19–5.17 (d, J=8 Hz, 1H, NH), 3.60 (s, 3H, OCH3), 2.22 (s, 3H, CH3). 13C NMR (400 MHz, p.p.m.) δ: 17.5 (CH3), 55.1 (OCH3), 61.5 (C8), 111.2 (C19), 112.5 (C20), 116.4 (C17), 123.9 (C16), 127.6, 128.1, 128.6, 128.7, 128.8 (C), 133.7 (C5), 134.7 (C2), 138.1 (C9), 138.3 (C15), 151.1 (C18), 197.6 (C9). Anal. Calc. for C22H21NO2: C, 79.73; H, 6.39; N, 4.23%. Found: C, 79.70; H, 6.21; N, 4.19%.

Refinement

H atom positions were clearly derived from difference Fourier maps and refined using a riding model, fixing the bond lengths at 0.98 and 0.95 Å for CH3 and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (C) or 1.5Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of (I). The hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

Synthesis of the title compound.

Crystal data

C22H21NO2 F(000) = 704
Mr = 331.40 Dx = 1.229 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4852 reflections
a = 12.570 (12) Å θ = 2.3–24.5°
b = 8.009 (8) Å µ = 0.08 mm1
c = 18.091 (17) Å T = 173 K
β = 100.544 (15)° Block, yellow
V = 1791 (3) Å3 0.21 × 0.19 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4122 independent reflections
Radiation source: fine-focus sealed tube 2935 reflections with I > 2σ(I)
graphite Rint = 0.055
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −16→16
Tmin = 0.984, Tmax = 0.988 k = −10→10
28799 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4229P] where P = (Fo2 + 2Fc2)/3
4122 reflections (Δ/σ)max = 0.004
226 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.70413 (11) 0.71666 (18) 0.13255 (8) 0.0336 (3)
C2 0.65511 (11) 0.79413 (17) 0.05905 (7) 0.0314 (3)
C3 0.70228 (12) 0.92642 (19) 0.02686 (8) 0.0380 (3)
H3A 0.7667 0.9764 0.0533 0.046*
C4 0.65510 (14) 0.9856 (2) −0.04399 (8) 0.0453 (4)
H4A 0.6879 1.0748 −0.0662 0.054*
C5 0.56034 (14) 0.9144 (2) −0.08206 (8) 0.0436 (4)
H5A 0.5286 0.9546 −0.1305 0.052*
C6 0.51179 (13) 0.7853 (2) −0.05009 (8) 0.0420 (4)
H6A 0.4460 0.7385 −0.0761 0.050*
C7 0.55897 (12) 0.72392 (18) 0.01989 (8) 0.0361 (3)
H7A 0.5260 0.6339 0.0414 0.043*
C8 0.78651 (11) 0.81396 (18) 0.19059 (8) 0.0339 (3)
H8A 0.8385 0.8744 0.1644 0.041*
C9 0.72052 (11) 0.94044 (17) 0.22728 (7) 0.0297 (3)
C10 0.72302 (12) 1.11045 (18) 0.21167 (8) 0.0370 (3)
H10A 0.7685 1.1508 0.1790 0.044*
C11 0.65930 (13) 1.22179 (18) 0.24361 (9) 0.0421 (4)
H11A 0.6615 1.3376 0.2327 0.051*
C12 0.59250 (12) 1.16418 (19) 0.29135 (8) 0.0396 (4)
H12A 0.5489 1.2403 0.3129 0.048*
C13 0.58976 (12) 0.99566 (19) 0.30736 (8) 0.0378 (3)
H13A 0.5441 0.9557 0.3399 0.045*
C14 0.65372 (11) 0.88458 (18) 0.27584 (8) 0.0334 (3)
H14A 0.6519 0.7691 0.2875 0.040*
C15 0.91952 (11) 0.72896 (19) 0.30593 (8) 0.0330 (3)
C16 0.95263 (11) 0.59902 (19) 0.35825 (8) 0.0346 (3)
C17 1.02943 (11) 0.6351 (2) 0.42183 (8) 0.0393 (4)
H17A 1.0524 0.5485 0.4570 0.047*
C18 1.07393 (12) 0.7936 (2) 0.43580 (8) 0.0412 (4)
C19 1.04216 (12) 0.9204 (2) 0.38448 (8) 0.0409 (4)
H19A 1.0725 1.0289 0.3929 0.049*
C20 0.96492 (11) 0.88712 (19) 0.32004 (8) 0.0375 (3)
H20A 0.9429 0.9745 0.2851 0.045*
C21 0.90500 (13) 0.4262 (2) 0.34587 (9) 0.0442 (4)
H21A 0.9374 0.3535 0.3875 0.066*
H21B 0.9201 0.3810 0.2985 0.066*
H21C 0.8266 0.4318 0.3435 0.066*
C22 1.19345 (16) 0.9696 (3) 0.52047 (11) 0.0690 (6)
H22A 1.2440 0.9640 0.5686 0.103*
H22B 1.1358 1.0496 0.5244 0.103*
H22C 1.2322 1.0058 0.4810 0.103*
N1 0.84386 (10) 0.69119 (16) 0.24129 (7) 0.0412 (3)
H1A 0.8302 0.5852 0.2308 0.049*
O1 0.67637 (9) 0.57676 (13) 0.14827 (6) 0.0477 (3)
O2 1.14758 (10) 0.80923 (17) 0.50230 (6) 0.0612 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0331 (7) 0.0372 (8) 0.0294 (7) −0.0008 (6) 0.0026 (6) −0.0002 (6)
C2 0.0323 (7) 0.0345 (8) 0.0264 (7) 0.0029 (6) 0.0024 (6) −0.0041 (6)
C3 0.0388 (8) 0.0420 (8) 0.0318 (8) −0.0004 (7) 0.0030 (6) −0.0009 (6)
C4 0.0585 (10) 0.0449 (9) 0.0338 (8) 0.0049 (8) 0.0114 (7) 0.0045 (7)
C5 0.0558 (10) 0.0458 (9) 0.0256 (7) 0.0141 (8) −0.0022 (7) −0.0025 (6)
C6 0.0435 (9) 0.0450 (9) 0.0326 (8) 0.0067 (7) −0.0062 (7) −0.0089 (7)
C7 0.0386 (8) 0.0360 (8) 0.0318 (7) 0.0014 (6) 0.0013 (6) −0.0056 (6)
C8 0.0314 (7) 0.0377 (8) 0.0299 (7) −0.0001 (6) −0.0013 (6) 0.0027 (6)
C9 0.0279 (7) 0.0321 (7) 0.0252 (7) −0.0033 (6) −0.0055 (5) 0.0023 (5)
C10 0.0399 (8) 0.0347 (8) 0.0331 (7) −0.0082 (6) −0.0024 (6) 0.0067 (6)
C11 0.0503 (9) 0.0265 (7) 0.0418 (8) −0.0024 (7) −0.0121 (7) 0.0012 (6)
C12 0.0401 (8) 0.0371 (8) 0.0362 (8) 0.0056 (7) −0.0076 (7) −0.0060 (6)
C13 0.0381 (8) 0.0399 (8) 0.0337 (7) −0.0025 (7) 0.0023 (6) −0.0008 (6)
C14 0.0373 (8) 0.0288 (7) 0.0314 (7) −0.0032 (6) −0.0006 (6) 0.0029 (6)
C15 0.0260 (7) 0.0444 (8) 0.0281 (7) 0.0042 (6) 0.0033 (5) 0.0017 (6)
C16 0.0279 (7) 0.0453 (9) 0.0315 (7) 0.0023 (6) 0.0084 (6) 0.0050 (6)
C17 0.0302 (7) 0.0542 (10) 0.0333 (8) 0.0001 (7) 0.0047 (6) 0.0151 (7)
C18 0.0297 (8) 0.0616 (10) 0.0295 (7) −0.0071 (7) −0.0016 (6) 0.0101 (7)
C19 0.0351 (8) 0.0499 (9) 0.0356 (8) −0.0089 (7) 0.0011 (6) 0.0052 (7)
C20 0.0337 (8) 0.0445 (9) 0.0323 (7) 0.0018 (7) 0.0007 (6) 0.0082 (6)
C21 0.0437 (9) 0.0476 (9) 0.0407 (8) −0.0011 (7) 0.0062 (7) 0.0079 (7)
C22 0.0614 (12) 0.0892 (15) 0.0463 (10) −0.0308 (11) −0.0170 (9) 0.0086 (10)
N1 0.0441 (7) 0.0359 (7) 0.0371 (7) 0.0081 (6) −0.0094 (6) −0.0035 (5)
O1 0.0572 (7) 0.0424 (6) 0.0380 (6) −0.0124 (5) −0.0057 (5) 0.0068 (5)
O2 0.0565 (7) 0.0759 (9) 0.0411 (6) −0.0243 (7) −0.0179 (6) 0.0195 (6)

Geometric parameters (Å, °)

C1—O1 1.2226 (19) C12—H12A 0.9500
C1—C2 1.494 (2) C13—C14 1.390 (2)
C1—C8 1.544 (2) C13—H13A 0.9500
C2—C3 1.393 (2) C14—H14A 0.9500
C2—C7 1.402 (2) C15—C20 1.394 (2)
C3—C4 1.393 (2) C15—N1 1.399 (2)
C3—H3A 0.9500 C15—C16 1.417 (2)
C4—C5 1.385 (2) C16—C17 1.390 (2)
C4—H4A 0.9500 C16—C21 1.509 (2)
C5—C6 1.380 (2) C17—C18 1.391 (2)
C5—H5A 0.9500 C17—H17A 0.9500
C6—C7 1.386 (2) C18—O2 1.383 (2)
C6—H6A 0.9500 C18—C19 1.385 (2)
C7—H7A 0.9500 C19—C20 1.399 (2)
C8—N1 1.4443 (19) C19—H19A 0.9500
C8—C9 1.535 (2) C20—H20A 0.9500
C8—H8A 1.0000 C21—H21A 0.9800
C9—C10 1.392 (2) C21—H21B 0.9800
C9—C14 1.395 (2) C21—H21C 0.9800
C10—C11 1.393 (2) C22—O2 1.422 (2)
C10—H10A 0.9500 C22—H22A 0.9800
C11—C12 1.389 (2) C22—H22B 0.9800
C11—H11A 0.9500 C22—H22C 0.9800
C12—C13 1.382 (2) N1—H1A 0.8800
O1—C1—C2 119.92 (13) C12—C13—H13A 120.0
O1—C1—C8 119.27 (13) C14—C13—H13A 120.0
C2—C1—C8 120.77 (13) C13—C14—C9 120.87 (14)
C3—C2—C7 119.18 (14) C13—C14—H14A 119.6
C3—C2—C1 123.38 (13) C9—C14—H14A 119.6
C7—C2—C1 117.39 (13) C20—C15—N1 122.87 (13)
C2—C3—C4 120.09 (15) C20—C15—C16 119.00 (14)
C2—C3—H3A 120.0 N1—C15—C16 118.12 (14)
C4—C3—H3A 120.0 C17—C16—C15 118.33 (15)
C5—C4—C3 119.99 (16) C17—C16—C21 120.70 (13)
C5—C4—H4A 120.0 C15—C16—C21 120.97 (14)
C3—C4—H4A 120.0 C16—C17—C18 122.38 (14)
C6—C5—C4 120.41 (15) C16—C17—H17A 118.8
C6—C5—H5A 119.8 C18—C17—H17A 118.8
C4—C5—H5A 119.8 O2—C18—C19 125.58 (15)
C5—C6—C7 120.02 (15) O2—C18—C17 115.06 (13)
C5—C6—H6A 120.0 C19—C18—C17 119.35 (14)
C7—C6—H6A 120.0 C18—C19—C20 119.34 (15)
C6—C7—C2 120.30 (15) C18—C19—H19A 120.3
C6—C7—H7A 119.9 C20—C19—H19A 120.3
C2—C7—H7A 119.9 C15—C20—C19 121.61 (14)
N1—C8—C9 114.91 (13) C15—C20—H20A 119.2
N1—C8—C1 106.44 (13) C19—C20—H20A 119.2
C9—C8—C1 106.20 (12) C16—C21—H21A 109.5
N1—C8—H8A 109.7 C16—C21—H21B 109.5
C9—C8—H8A 109.7 H21A—C21—H21B 109.5
C1—C8—H8A 109.7 C16—C21—H21C 109.5
C10—C9—C14 118.68 (13) H21A—C21—H21C 109.5
C10—C9—C8 121.58 (13) H21B—C21—H21C 109.5
C14—C9—C8 119.71 (13) O2—C22—H22A 109.5
C9—C10—C11 120.40 (15) O2—C22—H22B 109.5
C9—C10—H10A 119.8 H22A—C22—H22B 109.5
C11—C10—H10A 119.8 O2—C22—H22C 109.5
C12—C11—C10 120.28 (15) H22A—C22—H22C 109.5
C12—C11—H11A 119.9 H22B—C22—H22C 109.5
C10—C11—H11A 119.9 C15—N1—C8 124.59 (13)
C13—C12—C11 119.71 (14) C15—N1—H1A 117.7
C13—C12—H12A 120.1 C8—N1—H1A 117.7
C11—C12—H12A 120.1 C18—O2—C22 117.49 (13)
C12—C13—C14 120.05 (15)
O1—C1—C2—C3 −160.36 (14) C11—C12—C13—C14 0.1 (2)
C8—C1—C2—C3 22.1 (2) C12—C13—C14—C9 −0.6 (2)
O1—C1—C2—C7 17.0 (2) C10—C9—C14—C13 0.8 (2)
C8—C1—C2—C7 −160.60 (12) C8—C9—C14—C13 −177.33 (12)
C7—C2—C3—C4 −1.2 (2) C20—C15—C16—C17 0.0 (2)
C1—C2—C3—C4 176.15 (14) N1—C15—C16—C17 178.73 (13)
C2—C3—C4—C5 0.9 (2) C20—C15—C16—C21 179.37 (13)
C3—C4—C5—C6 0.3 (2) N1—C15—C16—C21 −1.9 (2)
C4—C5—C6—C7 −1.3 (2) C15—C16—C17—C18 0.4 (2)
C5—C6—C7—C2 1.0 (2) C21—C16—C17—C18 −178.96 (14)
C3—C2—C7—C6 0.2 (2) C16—C17—C18—O2 178.75 (13)
C1—C2—C7—C6 −177.25 (13) C16—C17—C18—C19 −0.8 (2)
O1—C1—C8—N1 21.30 (18) O2—C18—C19—C20 −178.70 (14)
C2—C1—C8—N1 −161.10 (12) C17—C18—C19—C20 0.8 (2)
O1—C1—C8—C9 −101.58 (16) N1—C15—C20—C19 −178.65 (14)
C2—C1—C8—C9 76.02 (16) C16—C15—C20—C19 0.0 (2)
N1—C8—C9—C10 135.07 (14) C18—C19—C20—C15 −0.4 (2)
C1—C8—C9—C10 −107.56 (15) C20—C15—N1—C8 −14.1 (2)
N1—C8—C9—C14 −46.83 (17) C16—C15—N1—C8 167.24 (13)
C1—C8—C9—C14 70.54 (15) C9—C8—N1—C15 −57.18 (19)
C14—C9—C10—C11 −0.5 (2) C1—C8—N1—C15 −174.41 (13)
C8—C9—C10—C11 177.64 (12) C19—C18—O2—C22 1.2 (2)
C9—C10—C11—C12 −0.1 (2) C17—C18—O2—C22 −178.33 (16)
C10—C11—C12—C13 0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.88 2.22 2.609 (3) 107
C11—H11A···O1i 0.95 2.48 3.352 (4) 153

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5030).

References

  1. Abdulla, R. F., Boyd, D. B., Jones, N. D. & Swartzendruber, J. K. (1985). J. Org. Chem. 50, 3502–3505.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Au, O. & Tafeenko, V. (1986). Rev. Cubana Quim. 2, 65–74.
  4. Au, O. & Tafeenko, V. (1987). Rev. Cubana Quim. 3, 79–86.
  5. Batsanov, A. S., Goeta, A. E., Howard, J. A. K., Soto, B. & Au-Alvarez, O. (2006). Acta Cryst. C62, o304–o306. [DOI] [PubMed]
  6. Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015960/hg5030sup1.cif

e-67-o1303-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015960/hg5030Isup2.hkl

e-67-o1303-Isup2.hkl (202KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015960/hg5030Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES