Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):m772. doi: 10.1107/S1600536811017879

(Acetonitrile-κN)penta­carbonyl­tungsten(0)

Christoph E Strasser a,*, Stephanie Cronje a, Helgard G Raubenheimer a
PMCID: PMC3120401  PMID: 21754656

Abstract

The acetonitrile ligand in the title compound, [W(CH3CN)(CO)5], is coordinated end-on to a penta­carbonyl­tungsten(0) fragment with a W—N bond length of 2.186 (4) Å, completing an octa­hedral coordination environment around the W atom.

Related literature

For other structures with an (alkyl nitrile-κN)penta­carbonyl­tungsten(0) fragment, see: Darensbourg et al. (1992); Reibenspies et al. (1994); Jefford et al. (1996). For structures with conjugated nitriles, see: Fischer et al. (1993); Helten et al. (2010) and for structures with nitriles that are part of an organometallic complex, see: Busetto et al. (1992); Duclos et al. (1999); Tang et al. (1999); Trylus et al. (1999); Cordiner et al. (2006). For the preparation, see: Strasser et al. (2010).graphic file with name e-67-0m772-scheme1.jpg

Experimental

Crystal data

  • [W(C2H3N)(CO)5]

  • M r = 364.95

  • Monoclinic, Inline graphic

  • a = 5.6485 (6) Å

  • b = 13.6231 (15) Å

  • c = 12.8642 (15) Å

  • β = 101.883 (2)°

  • V = 968.69 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.92 mm−1

  • T = 100 K

  • 0.17 × 0.07 × 0.05 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.337, T max = 0.549

  • 5297 measured reflections

  • 1973 independent reflections

  • 1694 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.055

  • S = 1.08

  • 1973 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −1.08 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017879/ds2110sup1.cif

e-67-0m772-sup1.cif (13KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017879/ds2110Isup2.hkl

e-67-0m772-Isup2.hkl (97.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank the National Research Foundation (NRF) of South Africa for financial support.

supplementary crystallographic information

Comment

The title compound is an important starting material in the synthesis of complexes containing the pentacarbonyltungsten(0) fragment. The nitrile ligand is coordinated end-on to W(CO)5, completing an octahedral coordination geometry at the tungsten atom.

The trans-influence of the acetonitrile ligand is echoed by the comparatively short W1—C11 bond [1.975 (5) Å] compared to the cis-carbonyls [W—C bond lengths 2.023 (5) Å to 2.056 (5) Å].

When the present molecular structure of [W(CH3CN)(CO)5] is compared to other literature examples of (nitrile-κN)pentacarbonyltungsten(0) compounds, surprisingly no significant variations in bond lengths can be observed within the metal–ligand bonds despite different electronic and steric properties of the nitriles used. Related crystal structures reported include the W(CO)5 adducts of alkylnitriles (Reibenspies et al., 1994; Jefford et al., 1996), conjugated nitriles (Fischer et al., 1993; Tang et al., 1999; Cordiner et al., 2006; Helten et al., 2010), α-metal-substituted alkyl nitriles (Busetto et al., 1992; Trylus et al., 1999) as well as deprotonated 2,3,4-tricyanopent-2-enedinitrile (Duclos et al., 1999).

Experimental

The compound was obtained as a side product after chromatography of a mixture obtained by treating pentacarbonyl[(4-methyl-1,3-thiazol- 2-yl)carbonyl]tungsten(0) with bis(trichloromethyl)carbonate (Strasser et al., 2010). Decomposition of the initial product followed by reaction of the pentacarbonyltungsten fragment with acetonitrile in the mobile phase resulted in formation of the title compound. Crystals of the title compound were formed by layering a dichloromethane solution with hexane.

Refinement

All H atoms were positioned geometrically (C—H = 0.98 Å) and constrained to ride on their parent atoms; the Uiso(H) values were set at 1.5 times Ueq(C).

The maximum residual electron density of 1.69 e Å-3 is located 0.85 Å next to W1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, ellipsoids are drawn at the 50% probability level.

Crystal data

[W(C2H3N)(CO)5] F(000) = 664
Mr = 364.95 Dx = 2.502 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3152 reflections
a = 5.6485 (6) Å θ = 2.2–26.4°
b = 13.6231 (15) Å µ = 11.92 mm1
c = 12.8642 (15) Å T = 100 K
β = 101.883 (2)° Prism, light yellow
V = 968.69 (19) Å3 0.17 × 0.07 × 0.05 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer 1973 independent reflections
Radiation source: fine-focus sealed tube 1694 reflections with I > 2σ(I)
graphite Rint = 0.021
ω scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −7→7
Tmin = 0.337, Tmax = 0.549 k = −17→16
5297 measured reflections l = −16→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.8554P] where P = (Fo2 + 2Fc2)/3
1973 reflections (Δ/σ)max = 0.002
128 parameters Δρmax = 1.69 e Å3
0 restraints Δρmin = −1.08 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
W1 0.12706 (3) 0.623964 (12) 0.793281 (13) 0.01429 (8)
O1 0.3950 (6) 0.4656 (3) 0.6833 (3) 0.0283 (8)
O2 −0.1535 (6) 0.4537 (2) 0.8890 (3) 0.0258 (8)
O3 −0.2754 (7) 0.6294 (2) 0.5820 (3) 0.0296 (8)
O4 0.4077 (6) 0.7892 (3) 0.6922 (3) 0.0304 (9)
O5 0.5558 (7) 0.6182 (2) 0.9985 (3) 0.0263 (8)
N1 −0.0645 (7) 0.7352 (3) 0.8667 (3) 0.0172 (8)
C1 −0.3065 (9) 0.8698 (3) 0.9416 (4) 0.0247 (11)
H1 −0.4783 0.8629 0.9087 0.037*
H2 −0.2493 0.9347 0.9252 0.037*
H3 −0.2848 0.8623 1.0188 0.037*
C2 −0.1690 (8) 0.7948 (3) 0.9004 (4) 0.0171 (9)
C11 0.2982 (8) 0.5241 (3) 0.7252 (4) 0.0199 (10)
C12 −0.0548 (8) 0.5153 (3) 0.8553 (4) 0.0183 (9)
C13 −0.1353 (8) 0.6289 (3) 0.6600 (4) 0.0202 (10)
C14 0.3031 (9) 0.7309 (3) 0.7303 (4) 0.0205 (10)
C15 0.4008 (8) 0.6203 (3) 0.9262 (4) 0.0191 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
W1 0.01444 (11) 0.01441 (11) 0.01459 (11) −0.00045 (6) 0.00428 (8) −0.00013 (7)
O1 0.029 (2) 0.0272 (19) 0.032 (2) 0.0021 (15) 0.0142 (17) −0.0088 (16)
O2 0.0288 (19) 0.0226 (17) 0.030 (2) −0.0014 (14) 0.0161 (17) 0.0021 (15)
O3 0.0275 (19) 0.036 (2) 0.0238 (19) −0.0018 (16) 0.0005 (17) −0.0008 (16)
O4 0.0265 (19) 0.033 (2) 0.031 (2) −0.0066 (16) 0.0033 (17) 0.0104 (16)
O5 0.0228 (18) 0.032 (2) 0.0234 (19) −0.0028 (14) 0.0031 (16) 0.0037 (15)
N1 0.0175 (19) 0.0197 (19) 0.0147 (19) −0.0014 (15) 0.0040 (16) 0.0010 (16)
C1 0.022 (2) 0.022 (2) 0.033 (3) 0.0035 (19) 0.011 (2) −0.004 (2)
C2 0.018 (2) 0.018 (2) 0.014 (2) −0.0032 (18) 0.0008 (19) −0.0012 (18)
C11 0.017 (2) 0.022 (2) 0.024 (3) −0.0038 (19) 0.011 (2) −0.001 (2)
C12 0.020 (2) 0.019 (2) 0.017 (2) 0.0008 (18) 0.0091 (19) −0.0029 (19)
C13 0.010 (2) 0.025 (2) 0.025 (3) 0.0002 (18) 0.0033 (19) −0.002 (2)
C14 0.018 (2) 0.022 (2) 0.019 (2) 0.000 (2) −0.001 (2) −0.002 (2)
C15 0.018 (2) 0.019 (2) 0.022 (2) −0.0039 (18) 0.007 (2) 0.0045 (19)

Geometric parameters (Å, °)

W1—N1 2.186 (4) C1—H1 0.9800
W1—C11 1.975 (5) C1—H2 0.9800
W1—C12 2.054 (5) C1—H3 0.9800
W1—C13 2.023 (5) C11—O1 1.160 (6)
W1—C14 2.024 (5) C12—O2 1.141 (6)
W1—C15 2.056 (5) C13—O3 1.143 (6)
N1—C2 1.140 (6) C14—O4 1.157 (6)
C1—C2 1.448 (6) C15—O5 1.139 (6)
O1—C11—W1 178.6 (5) C11—W1—C14 89.6 (2)
O2—C12—W1 178.8 (4) C11—W1—C15 90.0 (2)
O3—C13—W1 176.5 (4) C12—W1—C15 90.58 (18)
O4—C14—W1 177.3 (5) C13—W1—C12 90.86 (19)
O5—C15—W1 178.6 (4) C13—W1—C14 88.38 (19)
N1—C2—C1 178.7 (5) C13—W1—C15 178.36 (16)
C2—N1—W1 176.9 (4) C14—W1—C12 179.23 (19)
C11—W1—N1 179.26 (18) C14—W1—C15 90.18 (18)
C12—W1—N1 90.02 (16) C2—C1—H1 109.5
C13—W1—N1 90.09 (16) C2—C1—H2 109.5
C14—W1—N1 90.09 (18) C2—C1—H3 109.5
C15—W1—N1 90.70 (16) H1—C1—H2 109.5
C11—W1—C13 89.2 (2) H1—C1—H3 109.5
C11—W1—C12 90.32 (19) H2—C1—H3 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2110).

References

  1. Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Bruker (2002). SADABS and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Busetto, L., Bordoni, S., Zanotti, V., Albano, V. G. & Braga, D. (1992). New J. Chem. 16, 693–696.
  6. Cordiner, R. L., Smith, M. E., Batsanov, A. S., Albesa-Jové, D., Hartl, F., Howard, J. A. K. & Low, P. J. (2006). Inorg. Chim. Acta, 359, 946–961.
  7. Darensbourg, D. J., Atnip, E. V. & Reibenspies, J. H. (1992). Inorg. Chem. 31, 4475–4480.
  8. Duclos, S., Conan, F., Triki, S., Le Mest, Y., Liu-Gonzalez, M. & Sala Pala, J. (1999). Polyhedron, 18, 1935–1939.
  9. Fischer, H., Roth, G., Reindl, D. & Troll, C. (1993). J. Organomet. Chem. 454, 133–149.
  10. Helten, H., Beckmann, M., Schnakenburg, G. & Streubel, R. (2010). Eur. J. Inorg. Chem. pp. 2337–2341.
  11. Jefford, V. J., Schriver, M. J. & Zaworotko, M. J. (1996). Can. J. Chem. 74, 107–113.
  12. Reibenspies, J., Darensbourg, D. & Atnip, E. (1994). Z. Kristallogr. 209, 379–380.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2010). New J. Chem. 34, 458–469.
  15. Tang, Y., Sun, J. & Chen, J. (1999). Organometallics, 18, 2459–2465.
  16. Trylus, K.-H., Kernbach, U., Brüdgam, I. & Fehlhammer, W. P. (1999). Inorg. Chim. Acta, 291, 266–278.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017879/ds2110sup1.cif

e-67-0m772-sup1.cif (13KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017879/ds2110Isup2.hkl

e-67-0m772-Isup2.hkl (97.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES