Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):m677. doi: 10.1107/S1600536811016035

cis-Bis(2,2′-bipyridine-κ2 N,N′)dichlorido­iron(III) perchlorate

Zhi-Fang Zhang a,*
PMCID: PMC3120418  PMID: 21754585

Abstract

In the crystal structure of the title compound, [FeCl2(C10H8N2)2]ClO4, the coordination around the FeIII atom is approximately octa­hedral. The equatorial positions are occupied by two N atoms from two 2,2′-bipyridyl ligands [Fe—N = 2.121 (5) and 2.147 (5) Å] and two Cl atoms [Fe—Cl = 2.220 (2) and 2.2074 (18) Å]. Weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions consolidate the crystal packing.

Related literature

For the use of bipyridine and analogous ligands in the formation of transition metal complexes, see: Constable (1989). For applications of related compounds, see: Constable & Steel (1989); Steel et al. (1990). For related structures, see: Amani et al. (2007); Figgis et al. (1983).graphic file with name e-67-0m677-scheme1.jpg

Experimental

Crystal data

  • [FeCl2(C10H8N2)2]ClO4

  • M r = 538.57

  • Orthorhombic, Inline graphic

  • a = 10.891 (2) Å

  • b = 11.522 (2) Å

  • c = 16.990 (3) Å

  • V = 2132.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 295 K

  • 0.34 × 0.29 × 0.24 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.702, T max = 0.775

  • 5914 measured reflections

  • 3534 independent reflections

  • 2810 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.125

  • S = 1.08

  • 3534 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983), 1419 Friedel pairs

  • Flack parameter: 0.05 (3)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016035/zq2098sup1.cif

e-67-0m677-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016035/zq2098Isup2.hkl

e-67-0m677-Isup2.hkl (173.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the N2,C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2 0.93 2.52 3.140 (11) 124
C7—H7⋯O3i 0.93 2.55 3.239 (9) 131
C8—H8⋯O2ii 0.93 2.30 3.152 (9) 152
C13—H13⋯O2iii 0.93 2.54 3.423 (10) 158
C18—H18⋯O4iv 0.93 2.51 3.387 (10) 158
C10—H10⋯Cl3 0.93 2.71 3.308 (7) 122
C20—H20⋯Cl2 0.93 2.79 3.382 (7) 123
C11—H11⋯Cg4 0.93 2.90 3.705 (8) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The author gratefully acknowledges financial support from the Natural Science Foundation of the Education Department of Shaanxi Provincial Government (09 J K844) and is grateful for support provided by the key industry problem plan of Yulin (gygg200807) and the special research projects of Yulin University (08YK17).

supplementary crystallographic information

Comment

Bipyridine and analogous ligands such as phenanthroline are commonly used in the formation of different complexes with a general variety of transition metals (Constable, 1989). Studies of these transition metal complexes are important in understanding electron transfer processes, mixed valence complexes, magnetic coupling and magnetic transitions (Constable et al., 1989; Steel et al., 1990). Although bipyridine coordination to iron has been widely investigated, most complexes are iron(II) complexes, little attention has been paid to bipyridine iron(III) complexes. In order to expand this field, the title compound has been synthesized, and its crystal structure is reported herein.

The molecular structure of the title compound (I) is shown in Fig. 1. The crystal is composed of cis-[FeIII(bipy)2C12]+ cations and [C1O4]- anions. The FeIII atom is coordinated by two Cl anions and four N atoms from two 2,2'-bipyridyl ligands within a distorted octahedral geometry. The six-coordinate molecule is the cis-cis isomer considering the positions of the chlorine and pyridyl nitrogen atoms. The four Fe—N bond lengths [2.087 (4)–2.147 (5) Å] were similar and consistent with those reported earlier (Amani et al., 2007; Figgis et al., 1983). The distortion from a perfect octahedral geometry was primarily a consequence of the small bite-angle of the chelating ligands, which led to acute N1—Fe—N2 and N3—Fe—N4 angles of 75.96 (19)° and 75.4 (2)°, respectively.

Intermolecular C—H···O, C—H···Cl hydrogen bonds and C—H···π interactions stabilize the crystal structure (Table 1).

Experimental

All reagents were obtained from commercial sources and used without further purification. 2,2'-Bipyridine (0.312 g, 2.0 mmol) and NaClO4 (0.122 g,1.0 mmol) were added to a solution of FeCl3.6H2O (0.270 g, 1.0 mmol) in methanol (30 ml), and the solution was stirred at 60–65 oC for 3 h. A red-brown precipitate was obtained. After filtration, the red-brown filtrate was allowed to stand at room temperature for two weeks to give red-brown block-shaped crystals suitable for X-ray analysis. Elemental analysis for C20H16Cl3FeN4O4: C 44.60, H 2.99, N 10.40 %; found: C 44.52, H 3.03, N 10.39 %.

Refinement

All C-bound H atoms were positioned geometrically and treated as riding, with C—H = 0.93Å and Uiso(H) =1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing thermal ellipsoids at the 30% probability level.

Crystal data

[FeCl2(C10H8N2)2]ClO4 F(000) = 1092
Mr = 538.57 Dx = 1.678 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1783 reflections
a = 10.891 (2) Å θ = 2.4–25.9°
b = 11.522 (2) Å µ = 1.12 mm1
c = 16.990 (3) Å T = 295 K
V = 2132.1 (7) Å3 Block, red-brown
Z = 4 0.34 × 0.29 × 0.24 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 3534 independent reflections
Radiation source: fine-focus sealed tube 2810 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −7→12
Tmin = 0.702, Tmax = 0.775 k = −12→13
5914 measured reflections l = −20→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.043P)2 + 0.4377P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3534 reflections Δρmax = 0.75 e Å3
289 parameters Δρmin = −0.42 e Å3
0 restraints Absolute structure: Flack (1983), 1419 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.97563 (9) 0.23098 (7) 0.13357 (5) 0.0557 (3)
Cl1 0.4647 (2) 0.80918 (14) 0.13791 (10) 0.0674 (5)
Cl2 0.79726 (18) 0.13772 (13) 0.13412 (11) 0.0693 (5)
Cl3 1.10061 (18) 0.08017 (14) 0.13284 (11) 0.0722 (5)
O1 0.5403 (7) 0.8608 (5) 0.0835 (3) 0.111 (2)
O2 0.5221 (7) 0.7174 (5) 0.1726 (3) 0.127 (2)
O3 0.4321 (8) 0.8861 (5) 0.1958 (3) 0.139 (3)
O4 0.3639 (7) 0.7708 (8) 0.0978 (4) 0.164 (3)
N1 0.8727 (5) 0.3863 (4) 0.1221 (3) 0.0511 (13)
N2 0.9729 (5) 0.2621 (4) 0.0126 (3) 0.0499 (12)
N3 1.1301 (5) 0.3461 (4) 0.1420 (3) 0.0551 (13)
N4 0.9974 (5) 0.2596 (4) 0.2546 (3) 0.0529 (13)
C1 0.8236 (7) 0.4446 (6) 0.1798 (4) 0.067 (2)
H1 0.8394 0.4209 0.2311 0.080*
C2 0.7503 (8) 0.5385 (6) 0.1681 (5) 0.079 (3)
H2 0.7126 0.5762 0.2101 0.095*
C3 0.7341 (8) 0.5753 (6) 0.0926 (5) 0.076 (2)
H3 0.6866 0.6406 0.0823 0.092*
C4 0.7870 (8) 0.5169 (6) 0.0333 (4) 0.065 (2)
H4 0.7762 0.5419 −0.0183 0.078*
C5 0.8558 (6) 0.4220 (5) 0.0484 (4) 0.0481 (15)
C6 0.9143 (6) 0.3543 (5) −0.0115 (3) 0.0475 (15)
C7 0.9110 (8) 0.3798 (6) −0.0911 (4) 0.067 (2)
H7 0.8674 0.4442 −0.1086 0.081*
C8 0.9698 (7) 0.3129 (7) −0.1431 (4) 0.073 (2)
H8 0.9702 0.3321 −0.1963 0.087*
C9 1.0269 (7) 0.2198 (6) −0.1181 (4) 0.0691 (19)
H9 1.0661 0.1710 −0.1538 0.083*
C10 1.0287 (7) 0.1949 (5) −0.0396 (4) 0.0604 (17)
H10 1.0701 0.1291 −0.0223 0.072*
C11 1.1910 (7) 0.3941 (6) 0.0843 (4) 0.0658 (19)
H11 1.1659 0.3775 0.0333 0.079*
C12 1.2875 (9) 0.4658 (6) 0.0934 (5) 0.079 (2)
H12 1.3255 0.5006 0.0504 0.094*
C13 1.3264 (8) 0.4850 (6) 0.1671 (5) 0.079 (2)
H13 1.3935 0.5331 0.1762 0.095*
C14 1.2681 (8) 0.4344 (6) 0.2280 (4) 0.070 (2)
H14 1.2965 0.4458 0.2790 0.084*
C15 1.1680 (7) 0.3669 (5) 0.2151 (4) 0.0533 (16)
C16 1.0945 (7) 0.3178 (5) 0.2775 (4) 0.0564 (18)
C17 1.1226 (8) 0.3310 (5) 0.3553 (4) 0.072 (2)
H17 1.1922 0.3722 0.3703 0.087*
C18 1.0481 (10) 0.2833 (7) 0.4102 (4) 0.085 (3)
H18 1.0670 0.2904 0.4633 0.102*
C19 0.9466 (9) 0.2257 (7) 0.3879 (4) 0.086 (3)
H19 0.8932 0.1947 0.4251 0.104*
C20 0.9236 (8) 0.2136 (6) 0.3085 (4) 0.078 (2)
H20 0.8548 0.1722 0.2923 0.094*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0563 (6) 0.0609 (5) 0.0499 (5) 0.0006 (5) −0.0004 (5) 0.0042 (4)
Cl1 0.0817 (14) 0.0688 (9) 0.0518 (9) 0.0106 (10) −0.0023 (11) 0.0058 (9)
Cl2 0.0587 (11) 0.0678 (9) 0.0814 (11) −0.0092 (8) −0.0010 (11) 0.0118 (10)
Cl3 0.0703 (13) 0.0697 (9) 0.0765 (11) 0.0135 (9) −0.0031 (11) 0.0088 (10)
O1 0.126 (6) 0.117 (4) 0.089 (3) −0.022 (4) 0.033 (4) 0.012 (3)
O2 0.152 (7) 0.112 (4) 0.117 (4) 0.065 (5) 0.009 (4) 0.036 (3)
O3 0.215 (9) 0.108 (4) 0.093 (4) 0.054 (5) 0.044 (5) −0.004 (3)
O4 0.128 (7) 0.259 (9) 0.104 (4) −0.074 (7) −0.041 (5) 0.035 (5)
N1 0.054 (4) 0.054 (3) 0.045 (3) −0.005 (2) 0.001 (3) −0.006 (3)
N2 0.047 (3) 0.056 (3) 0.047 (3) 0.004 (3) 0.005 (3) −0.001 (2)
N3 0.051 (3) 0.056 (3) 0.058 (3) −0.007 (3) 0.003 (3) 0.009 (3)
N4 0.043 (3) 0.067 (3) 0.049 (3) 0.006 (3) −0.001 (2) 0.009 (2)
C1 0.065 (6) 0.077 (4) 0.058 (4) 0.002 (4) −0.002 (4) −0.004 (4)
C2 0.092 (7) 0.064 (4) 0.081 (5) 0.014 (5) −0.005 (5) −0.025 (4)
C3 0.076 (7) 0.055 (4) 0.099 (6) 0.010 (4) −0.010 (5) −0.011 (5)
C4 0.067 (6) 0.057 (4) 0.071 (4) −0.002 (4) −0.004 (4) 0.008 (4)
C5 0.044 (4) 0.038 (3) 0.062 (4) −0.003 (3) −0.007 (3) −0.002 (3)
C6 0.043 (4) 0.050 (3) 0.049 (3) −0.005 (3) −0.003 (3) 0.005 (3)
C7 0.077 (6) 0.068 (4) 0.058 (4) −0.015 (4) −0.008 (4) 0.010 (4)
C8 0.070 (5) 0.101 (5) 0.047 (4) −0.003 (5) −0.001 (4) 0.006 (4)
C9 0.061 (5) 0.091 (5) 0.055 (4) −0.013 (5) 0.008 (4) −0.012 (4)
C10 0.056 (5) 0.064 (4) 0.060 (4) 0.001 (4) 0.001 (4) −0.008 (3)
C11 0.054 (5) 0.068 (4) 0.075 (5) 0.000 (4) 0.002 (4) 0.001 (4)
C12 0.080 (7) 0.062 (4) 0.094 (6) −0.015 (4) 0.017 (5) 0.007 (5)
C13 0.068 (6) 0.067 (4) 0.102 (6) −0.008 (4) 0.014 (5) −0.023 (5)
C14 0.068 (6) 0.067 (4) 0.075 (5) −0.001 (4) −0.002 (4) −0.019 (4)
C15 0.048 (5) 0.051 (3) 0.062 (4) 0.002 (3) −0.009 (3) −0.009 (3)
C16 0.066 (5) 0.051 (4) 0.051 (4) 0.016 (4) −0.017 (4) 0.003 (3)
C17 0.088 (6) 0.066 (4) 0.063 (4) 0.004 (4) −0.018 (5) −0.012 (4)
C18 0.122 (9) 0.084 (5) 0.049 (4) 0.002 (6) −0.008 (5) −0.005 (4)
C19 0.115 (8) 0.096 (6) 0.048 (4) 0.006 (6) 0.011 (4) 0.017 (4)
C20 0.079 (6) 0.097 (5) 0.060 (4) −0.008 (5) 0.007 (4) 0.014 (4)

Geometric parameters (Å, °)

Fe1—N2 2.087 (4) C5—C6 1.432 (8)
Fe1—N4 2.096 (5) C6—C7 1.385 (8)
Fe1—N1 2.121 (5) C7—C8 1.336 (9)
Fe1—N3 2.147 (5) C7—H7 0.9300
Fe1—Cl3 2.2074 (18) C8—C9 1.310 (9)
Fe1—Cl2 2.220 (2) C8—H8 0.9300
Cl1—O2 1.363 (5) C9—C10 1.366 (8)
Cl1—O4 1.366 (7) C9—H9 0.9300
Cl1—O3 1.371 (5) C10—H10 0.9300
Cl1—O1 1.373 (6) C11—C12 1.346 (11)
N1—C1 1.302 (8) C11—H11 0.9300
N1—C5 1.332 (7) C12—C13 1.340 (11)
N2—C6 1.306 (7) C12—H12 0.9300
N2—C10 1.324 (7) C13—C14 1.346 (9)
N3—C11 1.306 (8) C13—H13 0.9300
N3—C15 1.330 (7) C14—C15 1.358 (9)
N4—C16 1.311 (8) C14—H14 0.9300
N4—C20 1.329 (8) C15—C16 1.444 (9)
C1—C2 1.360 (10) C16—C17 1.365 (8)
C1—H1 0.9300 C17—C18 1.353 (10)
C2—C3 1.362 (10) C17—H17 0.9300
C2—H2 0.9300 C18—C19 1.344 (11)
C3—C4 1.342 (9) C18—H18 0.9300
C3—H3 0.9300 C19—C20 1.378 (9)
C4—C5 1.350 (9) C19—H19 0.9300
C4—H4 0.9300 C20—H20 0.9300
N2—Fe1—N4 160.23 (18) C4—C5—C6 123.6 (6)
N2—Fe1—N1 75.96 (19) N2—C6—C7 119.5 (6)
N4—Fe1—N1 90.98 (18) N2—C6—C5 116.0 (5)
N2—Fe1—N3 88.34 (19) C7—C6—C5 124.5 (6)
N4—Fe1—N3 75.4 (2) C8—C7—C6 120.7 (7)
N1—Fe1—N3 84.2 (2) C8—C7—H7 119.6
N2—Fe1—Cl3 97.95 (16) C6—C7—H7 119.6
N4—Fe1—Cl3 93.40 (14) C9—C8—C7 119.1 (7)
N1—Fe1—Cl3 171.80 (16) C9—C8—H8 120.5
N3—Fe1—Cl3 90.20 (15) C7—C8—H8 120.5
N2—Fe1—Cl2 94.29 (15) C8—C9—C10 119.7 (7)
N4—Fe1—Cl2 99.84 (16) C8—C9—H9 120.1
N1—Fe1—Cl2 86.93 (15) C10—C9—H9 120.1
N3—Fe1—Cl2 169.85 (15) N2—C10—C9 121.6 (6)
Cl3—Fe1—Cl2 99.13 (8) N2—C10—H10 119.2
O2—Cl1—O4 109.4 (5) C9—C10—H10 119.2
O2—Cl1—O3 108.0 (4) N3—C11—C12 124.8 (7)
O4—Cl1—O3 111.0 (6) N3—C11—H11 117.6
O2—Cl1—O1 110.7 (4) C12—C11—H11 117.6
O4—Cl1—O1 106.7 (4) C13—C12—C11 117.1 (8)
O3—Cl1—O1 111.0 (4) C13—C12—H12 121.4
C1—N1—C5 119.5 (6) C11—C12—H12 121.4
C1—N1—Fe1 125.7 (4) C12—C13—C14 119.8 (8)
C5—N1—Fe1 114.8 (4) C12—C13—H13 120.1
C6—N2—C10 119.3 (5) C14—C13—H13 120.1
C6—N2—Fe1 117.1 (4) C13—C14—C15 120.2 (7)
C10—N2—Fe1 123.5 (4) C13—C14—H14 119.9
C11—N3—C15 117.8 (6) C15—C14—H14 119.9
C11—N3—Fe1 127.5 (5) N3—C15—C14 120.2 (7)
C15—N3—Fe1 114.6 (4) N3—C15—C16 116.3 (6)
C16—N4—C20 119.2 (6) C14—C15—C16 123.5 (6)
C16—N4—Fe1 117.6 (4) N4—C16—C17 121.7 (7)
C20—N4—Fe1 123.0 (5) N4—C16—C15 115.4 (5)
N1—C1—C2 122.8 (7) C17—C16—C15 122.9 (7)
N1—C1—H1 118.6 C18—C17—C16 119.2 (7)
C2—C1—H1 118.6 C18—C17—H17 120.4
C1—C2—C3 117.5 (7) C16—C17—H17 120.4
C1—C2—H2 121.3 C19—C18—C17 120.0 (7)
C3—C2—H2 121.3 C19—C18—H18 120.0
C4—C3—C2 119.7 (7) C17—C18—H18 120.0
C4—C3—H3 120.1 C18—C19—C20 118.4 (8)
C2—C3—H3 120.1 C18—C19—H19 120.8
C3—C4—C5 120.1 (7) C20—C19—H19 120.8
C3—C4—H4 119.9 N4—C20—C19 121.6 (8)
C5—C4—H4 119.9 N4—C20—H20 119.2
N1—C5—C4 120.3 (6) C19—C20—H20 119.2
N1—C5—C6 116.1 (5)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the N2,C6–C10 ring.
D—H···A D—H H···A D···A D—H···A
C3—H3···O2 0.93 2.52 3.140 (11) 124
C7—H7···O3i 0.93 2.55 3.239 (9) 131
C8—H8···O2ii 0.93 2.30 3.152 (9) 152
C13—H13···O2iii 0.93 2.54 3.423 (10) 158
C18—H18···O4iv 0.93 2.51 3.387 (10) 158
C10—H10···Cl3 0.93 2.71 3.308 (7) 122
C20—H20···Cl2 0.93 2.79 3.382 (7) 123
C11—H11···Cg4 0.93 2.90 3.705 (8) 146

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) −x+3/2, −y+1, z−1/2; (iii) x+1, y, z; (iv) −x+3/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2098).

References

  1. Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257–4262.
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Constable, E. C. (1989). Adv. Inorg. Chem. 34, 1–63.
  5. Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205–223.
  6. Figgis, B. N., Reynolds, P. A. & Lehner, N. (1983). Acta Cryst. B39, 711–717.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Steel, P. J. (1990). Coord. Chem. Rev. 106, 227–265.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016035/zq2098sup1.cif

e-67-0m677-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016035/zq2098Isup2.hkl

e-67-0m677-Isup2.hkl (173.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES