Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 14;67(Pt 6):m746. doi: 10.1107/S1600536811017648

Aqua­{6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4 O,N,N′,O′}(formato-κO)manganese(III) dihydrate

See Mun Lee a, Kong Mun Lo a, Seik Weng Ng a,*
PMCID: PMC3120422  PMID: 21754637

Abstract

The MnIII atom in the title complex, [Mn(C18H18N2O4)(CHO2)(H2O)]·2H2O, is O,N,N′,O′-chelated by the deproton­ated Schiff base; the four chelating atoms form an approximate square, with the O atoms of the water mol­ecule and the formate ion in axial positions above and below the square plane. Two metal-bearing mol­ecules are linked by an O—Hwater⋯O hydrogen bond about a center of inversion, generating a hydrogen-bonded dinuclear species; adjacent dinuclear units are linked through the lattice water mol­ecules, forming a three-dimensional network.

Related literature

For related MnIII compounds with the same Schiff base, see: Bermejo et al. (2007); Li et al. (2009); Zhang et al. (1999, 2000).graphic file with name e-67-0m746-scheme1.jpg

Experimental

Crystal data

  • [Mn(C18H18N2O4)(CHO2)(H2O)]·2H2O

  • M r = 480.35

  • Monoclinic, Inline graphic

  • a = 11.5670 (2) Å

  • b = 19.9312 (3) Å

  • c = 8.7701 (1) Å

  • β = 96.859 (1)°

  • V = 2007.42 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.932, T max = 0.932

  • 18245 measured reflections

  • 4600 independent reflections

  • 3660 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.192

  • S = 1.12

  • 4600 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 1.67 e Å−3

  • Δρmin = −0.96 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017648/bt5546sup1.cif

e-67-0m746-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017648/bt5546Isup2.hkl

e-67-0m746-Isup2.hkl (225.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O3i 0.84 2.01 2.730 (4) 143
O1w—H12⋯O2i 0.84 2.09 2.813 (4) 145
O2w—H21⋯O6 0.84 2.04 2.793 (5) 148
O2w—H22⋯O3w 0.84 1.96 2.762 (7) 161
O3w—H31⋯O2wii 0.84 1.94 2.782 (7) 179

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

supplementary crystallographic information

Comment

The 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenol Schiff base functions as a tetradentate dianionic ligand in a small number of manganese(III) derivatives (Bermejo et al., 2007; Li et al. 2009; Zhang et al., 1999, 2000). The counterion that balances the positive charge on the metal is involved in coordination. In the present study, the acetate portion of the manganese(III) acetate reactant undergoes carbon-carbon cleave to form a formate ion. The MnIII atom in Mn(H2O)(CHO2)(C18H18N2O4).2H2O (Scheme I) is O,N,N',O'-chelated by the deprotonated Schiff base; the four atoms involved in chelating form a square, above and below which are the O atoms of the water molecule and the formate ion (Fig. 1). Two molecules are linked by an O–Hwater···O hydrogen bond dinuclear species; adjacent dinuclear units are linked through the lattice water molecules, forming a three-dimensional network (Table 1).

Experimental

N,N'-Ethylenebis(4-methoxysalicylindeneaminate) was prepared by reacting 0.2 ml (3.1 mmol) of ethylenediamine with 0.9 g (6 mmol) of 2-hydroxy-4-methoxybenzaldehyde in 50 ml of ethanol. An aqueous solution of 0.18 g (1 mmol) of manganese(II) nitrate was added to a hot methanol solution (100 ml) containing 0. 32 g (1 mmol) of the ligand and 0.28 g (2 mmol) of sodium acetate trihydrate. The immediate brown solution was refluxed for an hour, after which it was filtered. Slow evaporation of the filtrate gave brown crystals. Under the reaction conditions, the acetate ion used in the synthesis was converted to the formate ion in the product; the carbon-carbon bond cleavage was accompanied by oxidation of the MnII to MnIII.

Refinement

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98, O—H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times Ueq(C). The water H atoms were placed on the basis of hydrogen bonding interactions. The O3w atom forms one only hydrogen bond; the O atom appears to be a little disordered but the disorder could not be modeled. The H31 atom is 1.99 Å from another H atom.

The final differerence Fourier map had a peak in the vicinity of Mn1.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of Mn(H2O)(CHO2)(C18H18N2O4).2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Mn(C18H18N2O4)(CHO2)(H2O)]·2H2O F(000) = 1000
Mr = 480.35 Dx = 1.589 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5455 reflections
a = 11.5670 (2) Å θ = 2.6–28.0°
b = 19.9312 (3) Å µ = 0.72 mm1
c = 8.7701 (1) Å T = 100 K
β = 96.859 (1)° Prism, brown
V = 2007.42 (5) Å3 0.10 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 4600 independent reflections
Radiation source: fine-focus sealed tube 3660 reflections with I > 2σ(I)
graphite Rint = 0.054
ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.932, Tmax = 0.932 k = −25→25
18245 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0885P)2 + 6.8815P] where P = (Fo2 + 2Fc2)/3
4600 reflections (Δ/σ)max = 0.001
280 parameters Δρmax = 1.67 e Å3
0 restraints Δρmin = −0.96 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.40763 (5) 0.60235 (3) 0.45697 (6) 0.01376 (19)
O1 0.6169 (2) 0.53984 (14) 0.8928 (3) 0.0177 (6)
O2 0.5069 (2) 0.58740 (13) 0.6460 (3) 0.0144 (5)
O3 0.3207 (2) 0.52060 (13) 0.4678 (3) 0.0125 (5)
O4 0.2108 (2) 0.42353 (13) 0.5778 (3) 0.0158 (6)
O5 0.2946 (2) 0.65306 (13) 0.5659 (3) 0.0162 (6)
O6 0.2078 (3) 0.65735 (18) 0.7803 (4) 0.0348 (8)
O1W 0.5237 (2) 0.55239 (13) 0.3407 (3) 0.0126 (5)
H11 0.5894 0.5451 0.3896 0.019*
H12 0.4944 0.5155 0.3105 0.019*
O2W 0.1084 (3) 0.7667 (2) 0.9154 (4) 0.0449 (10)
H21 0.1510 0.7465 0.8592 0.067*
H22 0.0809 0.7383 0.9721 0.067*
O3W −0.0064 (5) 0.6998 (3) 1.1285 (6) 0.0685 (14)
H31 0.0274 0.7096 1.2158 0.103*
H32 −0.0035 0.6581 1.1146 0.103*
N1 0.4905 (3) 0.68849 (16) 0.4208 (4) 0.0136 (6)
N2 0.3178 (3) 0.62522 (16) 0.2534 (4) 0.0143 (6)
C1 0.6694 (4) 0.5152 (2) 1.0374 (5) 0.0246 (9)
H1A 0.6264 0.4758 1.0668 0.037*
H1B 0.6676 0.5502 1.1155 0.037*
H1C 0.7504 0.5026 1.0294 0.037*
C2 0.6672 (3) 0.5951 (2) 0.8350 (4) 0.0161 (8)
C3 0.7689 (3) 0.6259 (2) 0.8983 (5) 0.0202 (8)
H3 0.8092 0.6095 0.9916 0.024*
C4 0.8127 (4) 0.6813 (2) 0.8249 (5) 0.0233 (9)
H4 0.8836 0.7017 0.8672 0.028*
C5 0.7536 (3) 0.7061 (2) 0.6929 (5) 0.0209 (9)
H5 0.7838 0.7438 0.6445 0.025*
C6 0.6482 (3) 0.67655 (19) 0.6269 (4) 0.0155 (7)
C7 0.6036 (3) 0.61946 (19) 0.6976 (4) 0.0138 (7)
C8 0.5872 (3) 0.70852 (19) 0.4923 (5) 0.0170 (8)
H8 0.6216 0.7474 0.4542 0.020*
C9 0.4287 (4) 0.72776 (19) 0.2943 (5) 0.0184 (8)
H9A 0.4841 0.7575 0.2491 0.022*
H9B 0.3683 0.7560 0.3333 0.022*
C10 0.3726 (4) 0.6793 (2) 0.1728 (5) 0.0189 (8)
H10A 0.3133 0.7029 0.1015 0.023*
H10B 0.4322 0.6605 0.1127 0.023*
C11 0.2202 (3) 0.59919 (19) 0.1976 (4) 0.0162 (7)
H11A 0.1824 0.6176 0.1049 0.019*
C12 0.1639 (3) 0.54401 (19) 0.2656 (4) 0.0143 (7)
C13 0.0536 (3) 0.5237 (2) 0.1934 (5) 0.0186 (8)
H13 0.0186 0.5475 0.1060 0.022*
C14 −0.0036 (3) 0.4701 (2) 0.2477 (5) 0.0201 (8)
H14 −0.0770 0.4566 0.1967 0.024*
C15 0.0461 (3) 0.4352 (2) 0.3783 (5) 0.0186 (8)
H15 0.0056 0.3986 0.4167 0.022*
C16 0.1531 (3) 0.45387 (18) 0.4506 (4) 0.0132 (7)
C17 0.2160 (3) 0.50826 (18) 0.3954 (4) 0.0116 (7)
C18 0.1525 (4) 0.3688 (2) 0.6400 (5) 0.0195 (8)
H18A 0.2013 0.3508 0.7297 0.029*
H18B 0.1376 0.3335 0.5622 0.029*
H18C 0.0783 0.3843 0.6709 0.029*
C19 0.2604 (4) 0.6283 (2) 0.6891 (5) 0.0232 (9)
H19 0.2783 0.5825 0.7102 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0155 (3) 0.0130 (3) 0.0126 (3) −0.0006 (2) 0.0011 (2) 0.0015 (2)
O1 0.0182 (14) 0.0221 (14) 0.0117 (13) −0.0003 (11) −0.0031 (10) 0.0014 (11)
O2 0.0141 (13) 0.0138 (13) 0.0151 (13) −0.0037 (10) 0.0006 (10) 0.0000 (10)
O3 0.0129 (12) 0.0119 (12) 0.0119 (12) −0.0012 (10) −0.0022 (10) 0.0012 (9)
O4 0.0173 (14) 0.0134 (13) 0.0163 (13) −0.0013 (10) 0.0007 (10) 0.0039 (10)
O5 0.0158 (13) 0.0145 (13) 0.0187 (14) 0.0010 (10) 0.0040 (11) −0.0008 (10)
O6 0.038 (2) 0.0346 (19) 0.0353 (19) −0.0131 (15) 0.0206 (16) −0.0151 (15)
O1W 0.0116 (12) 0.0134 (12) 0.0122 (12) −0.0006 (9) −0.0002 (10) 0.0005 (10)
O2W 0.042 (2) 0.054 (2) 0.039 (2) 0.0025 (18) 0.0034 (17) −0.0162 (18)
O3W 0.069 (3) 0.066 (3) 0.069 (3) −0.004 (3) 0.003 (3) 0.004 (3)
N1 0.0152 (15) 0.0119 (15) 0.0142 (15) 0.0004 (12) 0.0036 (12) 0.0025 (12)
N2 0.0170 (16) 0.0128 (15) 0.0134 (15) 0.0022 (12) 0.0023 (12) 0.0032 (12)
C1 0.027 (2) 0.036 (2) 0.0102 (18) 0.0038 (18) −0.0022 (16) 0.0031 (16)
C2 0.0155 (18) 0.0182 (19) 0.0147 (18) 0.0015 (14) 0.0023 (14) −0.0046 (14)
C3 0.0149 (19) 0.027 (2) 0.0182 (19) 0.0027 (16) −0.0017 (15) −0.0113 (16)
C4 0.0142 (19) 0.026 (2) 0.031 (2) −0.0031 (16) 0.0043 (16) −0.0138 (18)
C5 0.0153 (19) 0.0170 (19) 0.032 (2) −0.0030 (15) 0.0089 (16) −0.0082 (16)
C6 0.0132 (18) 0.0145 (18) 0.0191 (19) 0.0002 (14) 0.0033 (14) −0.0051 (14)
C7 0.0120 (17) 0.0161 (18) 0.0136 (17) 0.0016 (13) 0.0026 (14) −0.0066 (14)
C8 0.0199 (19) 0.0106 (17) 0.022 (2) −0.0009 (14) 0.0104 (16) −0.0005 (14)
C9 0.023 (2) 0.0146 (18) 0.0177 (19) 0.0004 (15) 0.0034 (16) 0.0062 (15)
C10 0.020 (2) 0.020 (2) 0.0164 (19) −0.0007 (15) 0.0041 (15) 0.0060 (15)
C11 0.0169 (18) 0.0170 (18) 0.0143 (18) 0.0051 (14) 0.0003 (14) 0.0032 (14)
C12 0.0151 (18) 0.0158 (18) 0.0119 (17) 0.0023 (14) 0.0008 (14) −0.0010 (14)
C13 0.0157 (19) 0.023 (2) 0.0164 (18) 0.0043 (15) −0.0025 (15) −0.0015 (15)
C14 0.0141 (18) 0.026 (2) 0.020 (2) −0.0025 (16) −0.0020 (15) −0.0052 (16)
C15 0.0154 (19) 0.021 (2) 0.0200 (19) −0.0018 (15) 0.0029 (15) −0.0021 (15)
C16 0.0151 (18) 0.0140 (17) 0.0103 (16) −0.0005 (14) 0.0010 (13) −0.0016 (13)
C17 0.0128 (17) 0.0111 (16) 0.0113 (16) 0.0013 (13) 0.0027 (13) −0.0026 (13)
C18 0.025 (2) 0.0148 (18) 0.0192 (19) −0.0049 (15) 0.0041 (16) 0.0028 (15)
C19 0.021 (2) 0.027 (2) 0.022 (2) −0.0087 (17) 0.0062 (17) −0.0055 (17)

Geometric parameters (Å, °)

Mn1—O3 1.923 (3) C3—C4 1.403 (6)
Mn1—O2 1.924 (3) C3—H3 0.9500
Mn1—O5 1.985 (3) C4—C5 1.364 (6)
Mn1—N2 2.008 (3) C4—H4 0.9500
Mn1—N1 2.010 (3) C5—C6 1.414 (5)
Mn1—O1W 2.040 (3) C5—H5 0.9500
O1—C2 1.371 (5) C6—C7 1.422 (5)
O1—C1 1.427 (5) C6—C8 1.449 (6)
O2—C7 1.321 (4) C8—H8 0.9500
O3—C17 1.322 (4) C9—C10 1.525 (6)
O4—C16 1.370 (4) C9—H9A 0.9900
O4—C18 1.426 (5) C9—H9B 0.9900
O5—C19 1.293 (5) C10—H10A 0.9900
O6—C19 1.208 (5) C10—H10B 0.9900
O1W—H11 0.8400 C11—C12 1.443 (5)
O1W—H12 0.8400 C11—H11A 0.9500
O2W—H21 0.8400 C12—C13 1.414 (5)
O2W—H22 0.8399 C12—C17 1.415 (5)
O3W—H31 0.8401 C13—C14 1.371 (6)
O3W—H32 0.8399 C13—H13 0.9500
N1—C8 1.279 (5) C14—C15 1.403 (6)
N1—C9 1.471 (5) C14—H14 0.9500
N2—C11 1.285 (5) C15—C16 1.373 (5)
N2—C10 1.473 (5) C15—H15 0.9500
C1—H1A 0.9800 C16—C17 1.423 (5)
C1—H1B 0.9800 C18—H18A 0.9800
C1—H1C 0.9800 C18—H18B 0.9800
C2—C3 1.383 (5) C18—H18C 0.9800
C2—C7 1.421 (5) C19—H19 0.9500
O3—Mn1—O2 95.04 (11) C5—C6—C8 117.6 (4)
O3—Mn1—O5 91.70 (11) C7—C6—C8 122.7 (3)
O2—Mn1—O5 91.35 (11) O2—C7—C2 117.2 (3)
O3—Mn1—N2 91.04 (12) O2—C7—C6 125.1 (3)
O2—Mn1—N2 173.53 (12) C2—C7—C6 117.7 (3)
O5—Mn1—N2 90.68 (12) N1—C8—C6 125.1 (3)
O3—Mn1—N1 173.52 (12) N1—C8—H8 117.5
O2—Mn1—N1 91.25 (12) C6—C8—H8 117.5
O5—Mn1—N1 89.71 (12) N1—C9—C10 108.5 (3)
N2—Mn1—N1 82.62 (13) N1—C9—H9A 110.0
O3—Mn1—O1W 89.43 (11) C10—C9—H9A 110.0
O2—Mn1—O1W 89.70 (11) N1—C9—H9B 110.0
O5—Mn1—O1W 178.39 (11) C10—C9—H9B 110.0
N2—Mn1—O1W 88.15 (12) H9A—C9—H9B 108.4
N1—Mn1—O1W 89.05 (12) N2—C10—C9 107.4 (3)
C2—O1—C1 116.8 (3) N2—C10—H10A 110.2
C7—O2—Mn1 127.9 (2) C9—C10—H10A 110.2
C17—O3—Mn1 126.0 (2) N2—C10—H10B 110.2
C16—O4—C18 116.2 (3) C9—C10—H10B 110.2
C19—O5—Mn1 119.6 (3) H10A—C10—H10B 108.5
Mn1—O1W—H11 116.0 N2—C11—C12 124.8 (3)
Mn1—O1W—H12 108.7 N2—C11—H11A 117.6
H11—O1W—H12 108.4 C12—C11—H11A 117.6
H21—O2W—H22 108.4 C13—C12—C17 119.4 (3)
H31—O3W—H32 110.0 C13—C12—C11 117.5 (3)
C8—N1—C9 121.4 (3) C17—C12—C11 123.1 (3)
C8—N1—Mn1 126.5 (3) C14—C13—C12 121.0 (4)
C9—N1—Mn1 112.1 (2) C14—C13—H13 119.5
C11—N2—C10 121.4 (3) C12—C13—H13 119.5
C11—N2—Mn1 125.8 (3) C13—C14—C15 120.1 (4)
C10—N2—Mn1 112.7 (2) C13—C14—H14 119.9
O1—C1—H1A 109.5 C15—C14—H14 119.9
O1—C1—H1B 109.5 C16—C15—C14 120.1 (4)
H1A—C1—H1B 109.5 C16—C15—H15 119.9
O1—C1—H1C 109.5 C14—C15—H15 119.9
H1A—C1—H1C 109.5 O4—C16—C15 125.6 (3)
H1B—C1—H1C 109.5 O4—C16—C17 113.2 (3)
O1—C2—C3 125.9 (4) C15—C16—C17 121.2 (4)
O1—C2—C7 112.8 (3) O3—C17—C12 124.8 (3)
C3—C2—C7 121.2 (4) O3—C17—C16 117.1 (3)
C2—C3—C4 120.1 (4) C12—C17—C16 118.1 (3)
C2—C3—H3 119.9 O4—C18—H18A 109.5
C4—C3—H3 119.9 O4—C18—H18B 109.5
C5—C4—C3 120.2 (4) H18A—C18—H18B 109.5
C5—C4—H4 119.9 O4—C18—H18C 109.5
C3—C4—H4 119.9 H18A—C18—H18C 109.5
C4—C5—C6 121.1 (4) H18B—C18—H18C 109.5
C4—C5—H5 119.5 O6—C19—O5 126.8 (5)
C6—C5—H5 119.5 O6—C19—H19 116.6
C5—C6—C7 119.6 (4) O5—C19—H19 116.6
O3—Mn1—O2—C7 166.9 (3) C3—C2—C7—O2 −179.4 (3)
O5—Mn1—O2—C7 −101.3 (3) O1—C2—C7—C6 −179.7 (3)
N1—Mn1—O2—C7 −11.5 (3) C3—C2—C7—C6 0.1 (5)
O1W—Mn1—O2—C7 77.5 (3) C5—C6—C7—O2 −179.5 (3)
O2—Mn1—O3—C17 159.0 (3) C8—C6—C7—O2 3.6 (6)
O5—Mn1—O3—C17 67.5 (3) C5—C6—C7—C2 1.1 (5)
N2—Mn1—O3—C17 −23.2 (3) C8—C6—C7—C2 −175.8 (3)
O1W—Mn1—O3—C17 −111.4 (3) C9—N1—C8—C6 173.9 (3)
O3—Mn1—O5—C19 46.9 (3) Mn1—N1—C8—C6 −8.3 (6)
O2—Mn1—O5—C19 −48.1 (3) C5—C6—C8—N1 −179.1 (4)
N2—Mn1—O5—C19 138.0 (3) C7—C6—C8—N1 −2.1 (6)
N1—Mn1—O5—C19 −139.4 (3) C8—N1—C9—C10 143.4 (4)
O2—Mn1—N1—C8 12.7 (3) Mn1—N1—C9—C10 −34.8 (4)
O5—Mn1—N1—C8 104.1 (3) C11—N2—C10—C9 142.6 (4)
N2—Mn1—N1—C8 −165.2 (3) Mn1—N2—C10—C9 −34.4 (4)
O1W—Mn1—N1—C8 −76.9 (3) N1—C9—C10—N2 44.2 (4)
O2—Mn1—N1—C9 −169.2 (3) C10—N2—C11—C12 176.8 (3)
O5—Mn1—N1—C9 −77.9 (3) Mn1—N2—C11—C12 −6.5 (6)
N2—Mn1—N1—C9 12.8 (2) N2—C11—C12—C13 176.8 (4)
O1W—Mn1—N1—C9 101.1 (2) N2—C11—C12—C17 −6.0 (6)
O3—Mn1—N2—C11 17.3 (3) C17—C12—C13—C14 0.3 (6)
O5—Mn1—N2—C11 −74.5 (3) C11—C12—C13—C14 177.6 (4)
N1—Mn1—N2—C11 −164.1 (3) C12—C13—C14—C15 1.1 (6)
O1W—Mn1—N2—C11 106.6 (3) C13—C14—C15—C16 −1.1 (6)
O3—Mn1—N2—C10 −165.8 (3) C18—O4—C16—C15 −1.1 (5)
O5—Mn1—N2—C10 102.5 (3) C18—O4—C16—C17 179.6 (3)
N1—Mn1—N2—C10 12.9 (3) C14—C15—C16—O4 −179.4 (4)
O1W—Mn1—N2—C10 −76.4 (3) C14—C15—C16—C17 −0.3 (6)
C1—O1—C2—C3 5.3 (5) Mn1—O3—C17—C12 19.2 (5)
C1—O1—C2—C7 −175.0 (3) Mn1—O3—C17—C16 −162.5 (2)
O1—C2—C3—C4 178.3 (4) C13—C12—C17—O3 176.7 (3)
C7—C2—C3—C4 −1.5 (6) C11—C12—C17—O3 −0.4 (6)
C2—C3—C4—C5 1.6 (6) C13—C12—C17—C16 −1.6 (5)
C3—C4—C5—C6 −0.4 (6) C11—C12—C17—C16 −178.8 (3)
C4—C5—C6—C7 −1.0 (6) O4—C16—C17—O3 2.4 (5)
C4—C5—C6—C8 176.1 (4) C15—C16—C17—O3 −176.8 (3)
Mn1—O2—C7—C2 −174.6 (2) O4—C16—C17—C12 −179.1 (3)
Mn1—O2—C7—C6 6.0 (5) C15—C16—C17—C12 1.7 (5)
O1—C2—C7—O2 0.9 (5) Mn1—O5—C19—O6 167.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1w—H11···O3i 0.84 2.01 2.730 (4) 143
O1w—H12···O2i 0.84 2.09 2.813 (4) 145
O2w—H21···O6 0.84 2.04 2.793 (5) 148
O2w—H22···O3w 0.84 1.96 2.762 (7) 161
O3w—H31···O2wii 0.84 1.94 2.782 (7) 179

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5546).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bermejo, M. R., Fernandez, M. I., Gomez-Forneas, E., Gonzalez-Noya, A., Maneiro, M., Pedrido, R. & Rodriguez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3789–3797.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Li, Z.-X., Li, X., Zhang, L.-F. & Yu, M.-M. (2009). Acta Cryst. E65, m153. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  8. Zhang, C.-G., Tian, G.-H., Ma, Z.-F. & Yan, D.-Y. (2000). Transition Met. Chem. 25, 270–273.
  9. Zhang, C.-G., Wu, D., Zhao, C.-X., Sun, J. & Kong, X.-F. (1999). Transition Met. Chem. 24, 718–721.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017648/bt5546sup1.cif

e-67-0m746-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017648/bt5546Isup2.hkl

e-67-0m746-Isup2.hkl (225.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES