Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):m654–m655. doi: 10.1107/S1600536811015753

Bis(2-amino-1,3-benzothia­zol-3-ium) tetra­chloridozincate(II)

Riadh Kefi a, Erwann Jeanneau b, Frédéric Lefebvre c, Cherif Ben Nasr a,*
PMCID: PMC3120423  PMID: 21754568

Abstract

The asymmetric unit of the title compound, (C7H7N2S)2[ZnCl4], contains a network of 2-amino­benzothia­zolium cations and tetra­hedral [ZnCl4]2− anions. The crystal packing is influenced by cation-to-anion N—H⋯Cl and C—H⋯Cl hydrogen bonds. The [ZnCl4]2− anions have a distorded tetra­hedral geometry. Inter­molecular π–π stacking inter­actions are present between neighboring benzene rings, thia­zole and benzene rings and neighboring thia­zole rings [centroid–centroid distances = 3.711 (2), 3.554 (1), 3.536 (2) and 3.572 (1) Å].

Related literature

For common applications of organic–inorganic hybrid mat­erials, see: Bringley & Rajeswaran (2006); Pierpont & Jung (1994); Dai et al. (2002). For the geometry around the zinc atom, see: Harrison (2005). For the weighting scheme used, see: Prince (1982); Watkin (1994) and for the extinction correction, see: Larson (1970).graphic file with name e-67-0m654-scheme1.jpg

Experimental

Crystal data

  • (C7H7N2S)2[ZnCl4]

  • M r = 509.61

  • Triclinic, Inline graphic

  • a = 7.543 (1) Å

  • b = 7.828 (1) Å

  • c = 17.109 (2) Å

  • α = 94.250 (1)°

  • β = 100.930 (1)°

  • γ = 92.465 (1)°

  • V = 987.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 110 K

  • 0.49 × 0.23 × 0.14 mm

Data collection

  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical [using a multifaceted crystal model based on expressions derived by Clark & Reid (1995), implemented in CrysAlis PRO (Agilent, 2010)] T min = 0.498, T max = 0.771

  • 10196 measured reflections

  • 4685 independent reflections

  • 3630 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.111

  • S = 0.94

  • 4685 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015753/vn2006sup1.cif

e-67-0m654-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015753/vn2006Isup2.hkl

e-67-0m654-Isup2.hkl (234KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H81⋯Cl3i 0.88 2.43 3.190 (5) 145
N15—H151⋯Cl3 0.86 2.42 3.235 (5) 157
N15—H152⋯Cl2i 0.86 2.42 3.274 (5) 176
N25—H251⋯Cl5ii 0.86 2.41 3.215 (5) 155
N16—H161⋯Cl4ii 0.86 2.34 3.196 (5) 177
N16—H162⋯Cl2iii 0.86 2.37 3.215 (5) 166
C20—H201⋯Cl2 0.93 2.69 3.473 (6) 142
C22—H221⋯Cl5iv 0.94 2.78 3.701 (5) 167
C11—H111⋯Cl4v 0.93 2.73 3.592 (6) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

Inorganic-organic hybrid compounds provide a class of materials displaying interesting technological importance (Bringley & Rajeswaran, 2006; Pierpont & Jung, 1994; Dai et al., 2002). We report the crystal structure of one such compound, (C7H7N2S)2[ZnCl4] (I), formed from the reaction of 2-aminobenzothiazole with zinc chloride. As shown in Fig.1, only the nitrogen atom of the thiazole ring of the title compound is protonated, but not that of the amine group. Thus, to ensure charge equilibrium, the structure associates each tetrachlorizincate anion with two (2-aminobenzothiazolium) cations. Fig.2 shows that the atomic arrangement of the title hybrid material can be described as inorganic ZnCl42- units isolated from each other by the organic cations. The different entities are held together by coulombic attraction and multiple hydrogen bonds to form a three dimensional network. The tetraclorozincate anion geometrical features show that the Zn—Cl bond lengths vary between 2.245 (1) and 2.282 (1) Å and the Cl—Zn—Cl angles range from 103.35 (5) to 112.21 (5) °. These values, which are in good agreement with those reported previously, clearly indicate that the [ZnCl4]2- anion has a slightly distorted tetrahedral stereochemistry (Harrison, 2005). Intermolecular π-π stacking interactions are present between neighboring phenyl rings (centroid-centroid distance = 3.711 (2) Å), thiazole-phenyl rings (centroid-centroid distance = 3.554 (1) Å) and thiazole-thiazole rings (centroid-centroid distances = 3.536 (2) and 3.572 (1) Å) (Fig. 3).

Experimental

A mixture of an aqueous solution of 2-aminobenzothiazole (3 mmol, 0.450 g), zinc chloride (1.5 mmol, 0.297 g) and HCl (10 ml, 0.3 M) in a Petri dish was slowly evaporated at room temperature. Colorless single crystals of the title compound were isolated after several days (yield 58%).

Refinement

All non hydrogen atoms were refined anisotropically. The H atoms were all located in a difference map. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are denoted by dotted lines. ZnCl4 is given in tetrahedral representation.

Fig. 3.

Fig. 3.

π–π stacking interactions in (C7H7N2S)2[ZnCl4]. The centroids of the rings are indicated by orange spheres.

Crystal data

(C7H7N2S)2[ZnCl4] Z = 2
Mr = 509.61 F(000) = 512
Triclinic, P1 Dx = 1.714 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.7107 Å
a = 7.543 (1) Å Cell parameters from 3221 reflections
b = 7.828 (1) Å θ = 3.4–29.4°
c = 17.109 (2) Å µ = 2.00 mm1
α = 94.250 (1)° T = 110 K
β = 100.930 (1)° Plate, colorless
γ = 92.465 (1)° 0.49 × 0.23 × 0.14 mm
V = 987.5 (2) Å3

Data collection

Agilent Xcalibur Atlas Gemini ultra diffractometer 4685 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3630 reflections with I > 2σ(I)
graphite Rint = 0.045
Detector resolution: 10.4685 pixels mm-1 θmax = 29.5°, θmin = 3.4°
ω scans h = −9→9
Absorption correction: analytical [using a multifaceted crystal model based on expressions derived by Clark & Reid (1995), implemented in CrysAlis PRO (Agilent, 2010)] k = −10→10
Tmin = 0.498, Tmax = 0.771 l = −22→23
10196 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.230E + 04 0.321E + 04 0.179E + 04 528.
wR(F2) = 0.111 (Δ/σ)max = 0.001
S = 0.94 Δρmax = 1.03 e Å3
4685 reflections Δρmin = −1.23 e Å3
227 parameters Extinction correction: Larson (1970), Equation 22
0 restraints Extinction coefficient: 20 (3)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.49814 (8) 0.31162 (7) 0.75071 (4) 0.0243
Cl2 0.29039 (16) 0.43801 (16) 0.81360 (8) 0.0274
Cl3 0.50293 (17) 0.47084 (17) 0.64494 (8) 0.0312
Cl4 0.43482 (19) 0.03141 (16) 0.71252 (8) 0.0327
Cl5 0.76785 (17) 0.33826 (17) 0.83422 (9) 0.0348
S6 0.80197 (17) 0.66813 (17) 0.54732 (8) 0.0271
C7 0.9702 (6) 0.6161 (6) 0.6239 (3) 0.0238
N8 1.1348 (6) 0.6629 (5) 0.6125 (3) 0.0270
C9 1.1369 (7) 0.7391 (6) 0.5413 (3) 0.0259
C10 0.9660 (7) 0.7508 (6) 0.4981 (3) 0.0274
C11 0.9378 (8) 0.8213 (7) 0.4244 (3) 0.0334
C12 1.0891 (9) 0.8761 (7) 0.3964 (4) 0.0399
C13 1.2610 (8) 0.8636 (7) 0.4407 (4) 0.0371
C14 1.2880 (7) 0.7940 (7) 0.5137 (4) 0.0332
N15 0.9376 (6) 0.5413 (6) 0.6864 (3) 0.0301
N16 0.4666 (6) 0.2078 (6) 1.1438 (3) 0.0318
C17 0.3739 (7) 0.1401 (6) 1.0765 (3) 0.0267
S18 0.33424 (17) 0.24680 (16) 0.98962 (8) 0.0267
C19 0.2084 (7) 0.0651 (7) 0.9370 (3) 0.0272
C20 0.1203 (7) 0.0453 (7) 0.8583 (3) 0.0289
C21 0.0273 (7) −0.1091 (7) 0.8316 (3) 0.0305
C22 0.0266 (7) −0.2424 (6) 0.8813 (3) 0.0298
C23 0.1155 (7) −0.2224 (6) 0.9596 (3) 0.0279
C24 0.2056 (7) −0.0673 (6) 0.9873 (3) 0.0258
N25 0.2989 (6) −0.0203 (5) 1.0642 (3) 0.0256
H111 0.8216 0.8312 0.3963 0.0401*
H121 1.0765 0.9226 0.3472 0.0479*
H131 1.3614 0.9009 0.4205 0.0452*
H141 1.4023 0.7848 0.5425 0.0398*
H201 0.1216 0.1333 0.8250 0.0348*
H211 −0.0354 −0.1254 0.7796 0.0368*
H221 −0.0350 −0.3478 0.8606 0.0360*
H231 0.1136 −0.3105 0.9923 0.0341*
H152 1.0268 0.5160 0.7218 0.0362*
H162 0.5251 0.3062 1.1464 0.0382*
H161 0.4973 0.1448 1.1825 0.0382*
H151 0.8275 0.5082 0.6881 0.0364*
H81 1.2342 0.6334 0.6426 0.0335*
H251 0.3111 −0.0904 1.1014 0.0316*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0209 (3) 0.0234 (3) 0.0286 (3) 0.0006 (2) 0.0037 (2) 0.0055 (2)
Cl2 0.0251 (6) 0.0269 (6) 0.0310 (6) 0.0003 (5) 0.0074 (5) 0.0040 (5)
Cl3 0.0238 (6) 0.0367 (7) 0.0359 (7) 0.0048 (5) 0.0079 (5) 0.0140 (5)
Cl4 0.0414 (7) 0.0246 (6) 0.0303 (6) −0.0007 (5) 0.0031 (5) 0.0032 (5)
Cl5 0.0256 (6) 0.0321 (7) 0.0434 (8) −0.0064 (5) −0.0049 (5) 0.0156 (6)
S6 0.0210 (6) 0.0287 (6) 0.0299 (6) 0.0014 (5) 0.0004 (5) 0.0036 (5)
C7 0.018 (2) 0.024 (2) 0.031 (3) 0.0051 (18) 0.0061 (19) 0.004 (2)
N8 0.022 (2) 0.025 (2) 0.034 (2) 0.0004 (16) 0.0037 (17) 0.0024 (18)
C9 0.028 (3) 0.024 (2) 0.028 (2) 0.0062 (19) 0.009 (2) 0.002 (2)
C10 0.032 (3) 0.021 (2) 0.028 (3) 0.003 (2) 0.004 (2) −0.003 (2)
C11 0.045 (3) 0.025 (3) 0.029 (3) −0.001 (2) 0.004 (2) −0.001 (2)
C12 0.061 (4) 0.026 (3) 0.032 (3) −0.009 (3) 0.013 (3) −0.003 (2)
C13 0.043 (3) 0.029 (3) 0.044 (3) 0.002 (2) 0.023 (3) −0.004 (2)
C14 0.026 (3) 0.030 (3) 0.045 (3) 0.001 (2) 0.010 (2) 0.001 (2)
N15 0.026 (2) 0.035 (2) 0.029 (2) −0.0015 (18) 0.0020 (18) 0.0060 (19)
N16 0.034 (2) 0.028 (2) 0.032 (2) −0.0031 (19) 0.0012 (19) 0.0066 (19)
C17 0.023 (2) 0.026 (2) 0.032 (3) −0.0024 (19) 0.007 (2) 0.006 (2)
S18 0.0268 (6) 0.0231 (6) 0.0308 (6) −0.0029 (5) 0.0068 (5) 0.0054 (5)
C19 0.021 (2) 0.029 (3) 0.034 (3) 0.0000 (19) 0.010 (2) 0.006 (2)
C20 0.028 (3) 0.027 (3) 0.035 (3) 0.002 (2) 0.011 (2) 0.005 (2)
C21 0.029 (3) 0.031 (3) 0.030 (3) −0.007 (2) 0.008 (2) −0.002 (2)
C22 0.029 (3) 0.019 (2) 0.041 (3) −0.0046 (19) 0.010 (2) −0.004 (2)
C23 0.028 (3) 0.022 (2) 0.036 (3) −0.0003 (19) 0.011 (2) 0.004 (2)
C24 0.022 (2) 0.025 (2) 0.032 (3) 0.0034 (19) 0.011 (2) 0.003 (2)
N25 0.028 (2) 0.0190 (19) 0.031 (2) 0.0027 (16) 0.0072 (18) 0.0060 (17)

Geometric parameters (Å, °)

Zn1—Cl2 2.2820 (14) N15—H152 0.856
Zn1—Cl3 2.2770 (14) N15—H151 0.865
Zn1—Cl4 2.2462 (14) N16—C17 1.292 (7)
Zn1—Cl5 2.2452 (14) N16—H162 0.865
S6—C7 1.728 (5) N16—H161 0.858
S6—C10 1.750 (5) C17—S18 1.741 (5)
C7—N8 1.333 (6) C17—N25 1.340 (6)
C7—N15 1.315 (6) S18—C19 1.762 (5)
N8—C9 1.397 (6) C19—C20 1.379 (7)
N8—H81 0.876 C19—C24 1.398 (7)
C9—C10 1.369 (7) C20—C21 1.372 (7)
C9—C14 1.378 (7) C20—H201 0.926
C10—C11 1.398 (7) C21—C22 1.394 (7)
C11—C12 1.383 (8) C21—H211 0.922
C11—H111 0.926 C22—C23 1.375 (8)
C12—C13 1.384 (9) C22—H221 0.940
C12—H121 0.932 C23—C24 1.372 (7)
C13—C14 1.384 (8) C23—H231 0.920
C13—H131 0.934 C24—N25 1.385 (7)
C14—H141 0.917 N25—H251 0.865
Cl2—Zn1—Cl3 103.35 (5) C7—N15—H152 119.0
Cl2—Zn1—Cl4 114.50 (5) C7—N15—H151 119.2
Cl3—Zn1—Cl4 112.21 (6) H152—N15—H151 121.4
Cl2—Zn1—Cl5 108.54 (6) C17—N16—H162 120.4
Cl3—Zn1—Cl5 110.34 (5) C17—N16—H161 119.8
Cl4—Zn1—Cl5 107.81 (6) H162—N16—H161 117.3
C7—S6—C10 90.0 (2) N16—C17—S18 123.7 (4)
S6—C7—N8 112.2 (4) N16—C17—N25 124.7 (5)
S6—C7—N15 123.3 (4) S18—C17—N25 111.6 (4)
N8—C7—N15 124.5 (5) C17—S18—C19 90.6 (2)
C7—N8—C9 114.5 (4) S18—C19—C20 128.4 (4)
C7—N8—H81 123.0 S18—C19—C24 110.2 (4)
C9—N8—H81 121.8 C20—C19—C24 121.4 (5)
N8—C9—C10 111.9 (5) C19—C20—C21 117.2 (5)
N8—C9—C14 126.5 (5) C19—C20—H201 121.4
C10—C9—C14 121.6 (5) C21—C20—H201 121.4
S6—C10—C9 111.4 (4) C20—C21—C22 121.5 (5)
S6—C10—C11 127.5 (4) C20—C21—H211 119.3
C9—C10—C11 121.1 (5) C22—C21—H211 119.2
C10—C11—C12 117.4 (6) C21—C22—C23 121.1 (5)
C10—C11—H111 120.4 C21—C22—H221 119.2
C12—C11—H111 122.1 C23—C22—H221 119.7
C11—C12—C13 120.8 (6) C22—C23—C24 117.9 (5)
C11—C12—H121 120.2 C22—C23—H231 120.7
C13—C12—H121 118.9 C24—C23—H231 121.4
C12—C13—C14 121.5 (5) C19—C24—C23 120.9 (5)
C12—C13—H131 119.5 C19—C24—N25 112.3 (4)
C14—C13—H131 119.0 C23—C24—N25 126.8 (5)
C13—C14—C9 117.5 (5) C24—N25—C17 115.3 (4)
C13—C14—H141 121.0 C24—N25—H251 122.4
C9—C14—H141 121.5 C17—N25—H251 122.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N8—H81···Cl3i 0.88 2.43 3.190 (5) 145
N15—H151···Cl3 0.86 2.42 3.235 (5) 157
N15—H152···Cl2i 0.86 2.42 3.274 (5) 176
N25—H251···Cl5ii 0.86 2.41 3.215 (5) 155
N16—H161···Cl4ii 0.86 2.34 3.196 (5) 177
N16—H162···Cl2iii 0.86 2.37 3.215 (5) 166
C20—H201···Cl2 0.93 2.69 3.473 (6) 142
C22—H221···Cl5iv 0.94 2.78 3.701 (5) 167
C11—H111···Cl4v 0.93 2.73 3.592 (6) 154

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+2; (iii) −x+1, −y+1, −z+2; (iv) x−1, y−1, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2006).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.
  6. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  7. Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sum, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396. [DOI] [PubMed]
  8. Harrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952.
  9. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  10. Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230.
  11. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag
  12. Watkin, D. (1994). Acta Cryst. A50, 411–437.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015753/vn2006sup1.cif

e-67-0m654-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015753/vn2006Isup2.hkl

e-67-0m654-Isup2.hkl (234KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES