Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 25;67(Pt 6):o1490. doi: 10.1107/S1600536811017107

N-(5-Ethylsulfanyl-1,3,4-thiadiazol-2-yl)-2-(4,5,6,7-tetrahydrothieno[3,2-c]pyri­din-5-yl)acetamide

Shuang Zhi a, Shuai Mu b, Ying Liu c,*, Deng-Ke Liu c
PMCID: PMC3120429  PMID: 21754858

Abstract

In the title compound, C13H16N4OS3, a thienopyridine­derivative, the tetra­hydro­pyridine ring exhibits a half-chair conformation, and the folded conformation of the mol­ecule is defined by the N—C—C—N torsion angle of −78.85 (16)°. The crystal packing features inter­molecular C—H⋯N, N—H⋯N and C—H⋯O hydrogen bonds.

Related literature

The title compound is a potential anti­platelet agent. As irreversible P2Y12 antagonists, thienopyridines have proved the relevance of inhibiting signaling via the platelet-specific P2Y12 ADP receptor in the prevention of cardiovascular events, see: Iyengar (2009); Franchini & Mannucci, (2009); Van Giezen et al. (2009); Van Giezen & Humphries (2005). For a related structure, see: Chen et al. (2010). For the synthesis of the title compound, see: Liu et al. (2008).graphic file with name e-67-o1490-scheme1.jpg

Experimental

Crystal data

  • C13H16N4OS3

  • M r = 340.48

  • Monoclinic, Inline graphic

  • a = 6.532 (4) Å

  • b = 9.788 (6) Å

  • c = 23.491 (15) Å

  • β = 95.524 (6)°

  • V = 1494.8 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 113 K

  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.873, T max = 0.916

  • 12423 measured reflections

  • 3545 independent reflections

  • 2653 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.03

  • 3545 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017107/kp2327sup1.cif

e-67-o1490-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017107/kp2327Isup2.hkl

e-67-o1490-Isup2.hkl (173.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811017107/kp2327Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯N1i 0.99 2.60 3.473 (3) 147
N2—H2⋯N3ii 0.89 (1) 2.02 (1) 2.902 (2) 171 (2)
C5—H5⋯O1iii 0.95 2.46 3.279 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Mr Hai-Bin Song of Nankai University for the X-ray crystallographic determination and for helpful suggestions.

supplementary crystallographic information

Comment

As irreversible P2Y12 antagonists, the thienopyridines (e.g., clopidogrel and prasugrel) have been further proved the relevance of inhibiting signaling via the platelet-specific P2Y12 ADP receptor in the prevention of cardiovascular events (Iyengar, 2009; Van Giezen & Humphries, 2005; Franchini, et al., 2009). The structure of the title compound (I), a new derivative of thienopyridine, is presented here.

The tetrahydropyridine ring is in a half-chair conformation (Fig. 1). The thiadiazole ring plane (r.m.s. deviation 0.0020Å) and the acidamide plane (r.m.s. deviation 0.0074 Å) are almost coplanar, with a dihedral angle of 3.24 (9)°. The dihedral angles formed between the thiadiazole ring plane and the thiophene ring plane, the acidamide plane and the thiophene ring plane are 76.19 (6)° and 78.47 (7)° , respectively. Crystal packing is via hydrogen bonds C—H···N, N—H···N and C—H···O (Table 1, Fig. 2).

Experimental

Chloracetyl chloride was dropwised added into a mixture of 5-(ethylthio)-1,3,4-thiadiazol-2-amine, TEA and DMF at 268 K. After stirred for 3 h, the mixture was poured into cold water. 2-Chloro-N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)acetamide was precipitated as an intermediate. Then the intermediate, equimolar quantities thienopyridine salt and TEA were refluxed for 5 h in acetonitrile, and the product was obtained by silica gel column chromatography. Crystallisation of the obtained yellow solid from methanol afforded light-yellow crystals suitable for X-ray analysis.

Refinement

The N–H bond was restrained to 0.90 Å, and other H atoms were positioned geometrioncally and refined using a riding model, with d(C—H)=0.95–0.99 Å, and Uiso(H)=1.2Ueq(C) of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram for (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C13H16N4OS3 F(000) = 712
Mr = 340.48 Dx = 1.513 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4582 reflections
a = 6.532 (4) Å θ = 1.7–27.9°
b = 9.788 (6) Å µ = 0.50 mm1
c = 23.491 (15) Å T = 113 K
β = 95.524 (6)° Prism, colourless
V = 1494.8 (16) Å3 0.28 × 0.22 × 0.18 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer 3545 independent reflections
Radiation source: rotating anode 2653 reflections with I > 2σ(I)
multilayer Rint = 0.036
Detector resolution: 14.63 pixels mm-1 θmax = 27.9°, θmin = 1.7°
ω and φ scans h = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −12→12
Tmin = 0.873, Tmax = 0.916 l = −28→30
12423 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3
3545 reflections (Δ/σ)max = 0.004
195 parameters Δρmax = 0.44 e Å3
1 restraint Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.09432 (6) −0.17109 (4) 0.167990 (17) 0.02366 (11)
S2 0.59937 (6) 0.64557 (4) 0.091056 (16) 0.01921 (10)
S3 0.24260 (6) 0.77190 (4) 0.021966 (17) 0.02324 (11)
O1 0.87853 (17) 0.54420 (11) 0.17006 (4) 0.0257 (3)
N1 1.16286 (18) 0.27779 (12) 0.15327 (5) 0.0188 (3)
N2 0.9587 (2) 0.51028 (13) 0.08012 (5) 0.0195 (3)
N3 0.76496 (19) 0.59529 (13) −0.00107 (5) 0.0199 (3)
N4 0.58266 (19) 0.66332 (13) −0.01858 (5) 0.0196 (3)
C1 1.3598 (2) 0.20466 (16) 0.15877 (7) 0.0220 (3)
H1A 1.4181 0.2046 0.1993 0.026*
H1B 1.4584 0.2513 0.1359 0.026*
C2 1.3270 (2) 0.05905 (16) 0.13799 (7) 0.0233 (3)
H2A 1.2955 0.0577 0.0959 0.028*
H2B 1.4531 0.0045 0.1479 0.028*
C3 1.1520 (2) 0.00006 (15) 0.16615 (6) 0.0194 (3)
C4 0.8868 (2) −0.14081 (15) 0.20530 (7) 0.0234 (3)
H4 0.7989 −0.2103 0.2173 0.028*
C5 0.8627 (2) −0.00627 (15) 0.21566 (6) 0.0214 (3)
H5 0.7562 0.0299 0.2360 0.026*
C6 1.0153 (2) 0.07498 (15) 0.19257 (6) 0.0184 (3)
C7 1.0281 (2) 0.22806 (15) 0.19494 (6) 0.0197 (3)
H7A 0.8889 0.2676 0.1865 0.024*
H7B 1.0824 0.2573 0.2338 0.024*
C8 1.1928 (2) 0.42478 (15) 0.15876 (7) 0.0220 (3)
H8A 1.3052 0.4538 0.1361 0.026*
H8B 1.2324 0.4484 0.1993 0.026*
C9 0.9969 (2) 0.49862 (14) 0.13783 (7) 0.0204 (3)
C10 0.7907 (2) 0.57771 (14) 0.05403 (6) 0.0181 (3)
C11 0.4826 (2) 0.69389 (15) 0.02453 (6) 0.0190 (3)
C12 0.2098 (3) 0.84165 (17) −0.04979 (7) 0.0300 (4)
H12A 0.3070 0.7958 −0.0734 0.036*
H12B 0.0686 0.8216 −0.0669 0.036*
C13 0.2449 (3) 0.99201 (18) −0.05141 (8) 0.0362 (4)
H13A 0.1524 1.0379 −0.0271 0.054*
H13B 0.2173 1.0249 −0.0908 0.054*
H13C 0.3879 1.0121 −0.0374 0.054*
H2 1.047 (2) 0.4714 (17) 0.0587 (7) 0.038 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0286 (2) 0.0204 (2) 0.0220 (2) 0.00424 (17) 0.00251 (17) 0.00018 (16)
S2 0.0206 (2) 0.02023 (18) 0.0177 (2) 0.00016 (15) 0.00653 (16) −0.00083 (15)
S3 0.0217 (2) 0.0242 (2) 0.0244 (2) 0.00316 (16) 0.00550 (17) 0.00097 (16)
O1 0.0338 (7) 0.0255 (6) 0.0190 (6) 0.0047 (5) 0.0095 (5) 0.0034 (5)
N1 0.0177 (7) 0.0200 (6) 0.0189 (7) 0.0010 (5) 0.0038 (5) 0.0011 (5)
N2 0.0192 (7) 0.0222 (6) 0.0178 (7) 0.0017 (5) 0.0052 (5) −0.0018 (5)
N3 0.0185 (7) 0.0228 (6) 0.0186 (7) −0.0007 (5) 0.0030 (5) −0.0029 (5)
N4 0.0179 (7) 0.0210 (6) 0.0200 (7) −0.0015 (5) 0.0026 (5) −0.0019 (5)
C1 0.0165 (8) 0.0283 (8) 0.0213 (8) 0.0002 (6) 0.0017 (6) −0.0002 (6)
C2 0.0190 (8) 0.0286 (8) 0.0224 (8) 0.0039 (7) 0.0031 (7) −0.0024 (7)
C3 0.0197 (8) 0.0213 (7) 0.0164 (8) 0.0025 (6) −0.0016 (6) 0.0005 (6)
C4 0.0278 (9) 0.0243 (8) 0.0181 (8) −0.0009 (7) 0.0020 (7) 0.0045 (6)
C5 0.0235 (8) 0.0252 (8) 0.0157 (8) 0.0019 (6) 0.0031 (6) 0.0020 (6)
C6 0.0198 (8) 0.0210 (7) 0.0141 (7) 0.0014 (6) −0.0003 (6) 0.0012 (6)
C7 0.0198 (8) 0.0223 (7) 0.0174 (8) 0.0003 (6) 0.0042 (6) −0.0009 (6)
C8 0.0216 (8) 0.0220 (8) 0.0223 (8) −0.0037 (6) 0.0020 (7) 0.0002 (6)
C9 0.0248 (8) 0.0154 (7) 0.0216 (8) −0.0056 (6) 0.0049 (7) 0.0010 (6)
C10 0.0191 (8) 0.0166 (7) 0.0195 (8) −0.0025 (6) 0.0067 (6) −0.0013 (6)
C11 0.0193 (8) 0.0176 (7) 0.0200 (8) −0.0034 (6) 0.0024 (6) −0.0011 (6)
C12 0.0335 (10) 0.0342 (9) 0.0216 (9) 0.0088 (8) −0.0004 (7) −0.0013 (7)
C13 0.0387 (11) 0.0375 (10) 0.0303 (10) −0.0098 (8) −0.0067 (8) 0.0095 (8)

Geometric parameters (Å, °)

S1—C4 1.7096 (18) C2—H2A 0.9900
S1—C3 1.7186 (18) C2—H2B 0.9900
S2—C10 1.7232 (16) C3—C6 1.352 (2)
S2—C11 1.7372 (18) C4—C5 1.351 (2)
S3—C11 1.7396 (18) C4—H4 0.9500
S3—C12 1.812 (2) C5—C6 1.423 (2)
O1—C9 1.2179 (18) C5—H5 0.9500
N1—C8 1.456 (2) C6—C7 1.501 (2)
N1—C7 1.4614 (18) C7—H7A 0.9900
N1—C1 1.467 (2) C7—H7B 0.9900
N2—C9 1.359 (2) C8—C9 1.510 (2)
N2—C10 1.373 (2) C8—H8A 0.9900
N2—H2 0.885 (9) C8—H8B 0.9900
N3—C10 1.300 (2) C12—C13 1.490 (3)
N3—N4 1.3914 (18) C12—H12A 0.9900
N4—C11 1.2921 (19) C12—H12B 0.9900
C1—C2 1.515 (2) C13—H13A 0.9800
C1—H1A 0.9900 C13—H13B 0.9800
C1—H1B 0.9900 C13—H13C 0.9800
C2—C3 1.491 (2)
C4—S1—C3 91.75 (7) C5—C6—C7 125.60 (13)
C10—S2—C11 85.86 (8) N1—C7—C6 110.02 (11)
C11—S3—C12 102.89 (8) N1—C7—H7A 109.7
C8—N1—C7 110.75 (11) C6—C7—H7A 109.7
C8—N1—C1 111.43 (12) N1—C7—H7B 109.7
C7—N1—C1 110.99 (12) C6—C7—H7B 109.7
C9—N2—C10 123.21 (13) H7A—C7—H7B 108.2
C9—N2—H2 117.7 (13) N1—C8—C9 110.00 (13)
C10—N2—H2 119.1 (13) N1—C8—H8A 109.7
C10—N3—N4 112.50 (12) C9—C8—H8A 109.7
C11—N4—N3 111.23 (13) N1—C8—H8B 109.7
N1—C1—C2 109.60 (13) C9—C8—H8B 109.7
N1—C1—H1A 109.8 H8A—C8—H8B 108.2
C2—C1—H1A 109.8 O1—C9—N2 121.50 (15)
N1—C1—H1B 109.8 O1—C9—C8 122.81 (15)
C2—C1—H1B 109.8 N2—C9—C8 115.69 (13)
H1A—C1—H1B 108.2 N3—C10—N2 121.95 (13)
C3—C2—C1 108.17 (12) N3—C10—S2 114.88 (12)
C3—C2—H2A 110.1 N2—C10—S2 123.17 (12)
C1—C2—H2A 110.1 N4—C11—S2 115.51 (12)
C3—C2—H2B 110.1 N4—C11—S3 126.62 (13)
C1—C2—H2B 110.1 S2—C11—S3 117.83 (9)
H2A—C2—H2B 108.4 C13—C12—S3 113.02 (12)
C6—C3—C2 124.21 (14) C13—C12—H12A 109.0
C6—C3—S1 111.17 (12) S3—C12—H12A 109.0
C2—C3—S1 124.61 (11) C13—C12—H12B 109.0
C5—C4—S1 111.89 (12) S3—C12—H12B 109.0
C5—C4—H4 124.1 H12A—C12—H12B 107.8
S1—C4—H4 124.1 C12—C13—H13A 109.5
C4—C5—C6 112.24 (14) C12—C13—H13B 109.5
C4—C5—H5 123.9 H13A—C13—H13B 109.5
C6—C5—H5 123.9 C12—C13—H13C 109.5
C3—C6—C5 112.94 (14) H13A—C13—H13C 109.5
C3—C6—C7 121.45 (13) H13B—C13—H13C 109.5
C10—N3—N4—C11 0.50 (17) C7—N1—C8—C9 −70.74 (16)
C8—N1—C1—C2 −165.54 (12) C1—N1—C8—C9 165.18 (12)
C7—N1—C1—C2 70.53 (16) C10—N2—C9—O1 2.6 (2)
N1—C1—C2—C3 −49.63 (17) C10—N2—C9—C8 −178.09 (13)
C1—C2—C3—C6 16.2 (2) N1—C8—C9—O1 100.49 (17)
C1—C2—C3—S1 −165.28 (12) N1—C8—C9—N2 −78.85 (16)
C4—S1—C3—C6 −0.65 (13) N4—N3—C10—N2 178.63 (12)
C4—S1—C3—C2 −179.37 (14) N4—N3—C10—S2 −1.53 (16)
C3—S1—C4—C5 0.16 (13) C9—N2—C10—N3 175.29 (14)
S1—C4—C5—C6 0.36 (18) C9—N2—C10—S2 −4.5 (2)
C2—C3—C6—C5 179.69 (14) C11—S2—C10—N3 1.57 (12)
S1—C3—C6—C5 0.97 (17) C11—S2—C10—N2 −178.59 (13)
C2—C3—C6—C7 0.9 (2) N3—N4—C11—S2 0.73 (16)
S1—C3—C6—C7 −177.84 (12) N3—N4—C11—S3 −176.86 (10)
C4—C5—C6—C3 −0.9 (2) C10—S2—C11—N4 −1.29 (12)
C4—C5—C6—C7 177.88 (15) C10—S2—C11—S3 176.53 (10)
C8—N1—C7—C6 −174.53 (12) C12—S3—C11—N4 −16.16 (16)
C1—N1—C7—C6 −50.20 (16) C12—S3—C11—S2 166.30 (9)
C3—C6—C7—N1 15.4 (2) C11—S3—C12—C13 −103.33 (14)
C5—C6—C7—N1 −163.23 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12B···N1i 0.99 2.60 3.473 (3) 147
N2—H2···N3ii 0.89 (1) 2.02 (1) 2.902 (2) 171.(2)
C5—H5···O1iii 0.95 2.46 3.279 (2) 145

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2327).

References

  1. Chen, J.-F., Liu, Y., Wang, J.-Y. & Liu, D.-K. (2010). Acta Cryst. E66, o3213. [DOI] [PMC free article] [PubMed]
  2. Franchini, M. & Mannucci, P. M. (2009). Eur. J. Int. Med. 20, 733–738. [DOI] [PubMed]
  3. Iyengar, S. (2009). J. Thromb. Thrombolysis, 27, 300–306. [DOI] [PubMed]
  4. Liu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.
  5. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Van Giezen, J. J. J., Berntsson, P., Zachrisson, H. & Bjorkman, J. A. (2009). Thromb. Res. 124, 565–571. [DOI] [PubMed]
  8. Van Giezen, J. J. J. & Humphries, R. G. (2005). Sem. Thromb. Hemost. 31, 195–204. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017107/kp2327sup1.cif

e-67-o1490-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017107/kp2327Isup2.hkl

e-67-o1490-Isup2.hkl (173.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811017107/kp2327Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES