Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 14;67(Pt 6):m748. doi: 10.1107/S1600536811017260

Aqua­[N′-(3-eth­oxy-2-oxidobenzyl-κO)furan-1-carbohydrazidato-κ2 N′,O]dioxido­molybdenum(VI)–4,4′-bipyridine (2/1)

Ngui Khiong Ngan a, Richard Chee Seng Wong a, Kong Mun Lo a, Seik Weng Ng a,*
PMCID: PMC3120460  PMID: 21754639

Abstract

The MoVI atom in the title co-crystal, [Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2, is O,N,O′-chelated by the deprotonated Schiff base and coordinated by the oxide and water O atoms in an octa­hedral geometry. The five-membered chelate ring is planar (r.m.s. deviation = 0.019 Å), but the six-membered chelate ring is puckered (r.m.s. deviation = 0.108 Å). Two mononuclear mol­ecules are linked across a center of inversion by an O—Hwater⋯O hydrogen bond; adjacent dinuclear units are linked by an water–4,4′-bipyridine O—H⋯N hydrogen bond, generating a linear chain structure. The 4,4′-bipyridine mol­ecule is disordered over two positions in a 1:1 ratio.

Related literature

For a related MoVIO2–4′,4-bipyridine adduct, see: Dinda et al. (2006).graphic file with name e-67-0m748-scheme1.jpg

Experimental

Crystal data

  • [Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2

  • M r = 496.30

  • Triclinic, Inline graphic

  • a = 7.9237 (1) Å

  • b = 10.1869 (1) Å

  • c = 13.3215 (2) Å

  • α = 78.7841 (5)°

  • β = 78.4605 (5)°

  • γ = 69.5728 (5)°

  • V = 978.15 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.649, T max = 0.746

  • 9175 measured reflections

  • 4445 independent reflections

  • 4266 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.076

  • S = 0.98

  • 4445 reflections

  • 275 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017260/jh2290sup1.cif

e-67-0m748-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017260/jh2290Isup2.hkl

e-67-0m748-Isup2.hkl (217.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯N3 0.83 (1) 1.86 (1) 2.689 (3) 174 (3)
O1w—H12⋯N1i 0.84 (1) 1.97 (1) 2.794 (2) 167 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

supplementary crystallographic information

Comment

The Schiff bases that are synthesized by condensing salicylaldehyde (and its substituted analogs) with aroylhydrazides (and their substituted analogs) function as terdentate O,N,O'-chelates to a wide range of metal ions. A large number of metal derivatives have been reported; in octahedral systems, the ligand generally exists as a doubly-deprotonated species that chelates in a fac manner. A dioxomolybdenum(VI) derivative is known in which 4,4'-bipyridine binds to two metal atoms (Dinda et al., 2006). In the present study, a furan-type of Schiff base leads to a water-coordinated derivative in which 4,4'-bipyridine interacts indirectly, through the water molecule, in an outer-sphere coordination mode. The MoVI atom in the co-crystal, MoO2(H2O)(C14H12N2O4).0.5C10H10N2, is O,N,O'-chelated by the deprotonated Schiff base and coordinated by the oxo and water O atoms in an octahedral geometry (Scheme I, Fig. 1). The five-membed chelate ring is planar [r.m.s. deviation 0.019 Å] but the six-membered chelate ring is puckered [r.m.s. deviation 0.108 Å]. Two mononuclear molecules are linked across a center-of-inversion by an O–Hwater···O hydrogen bond; adjacent dinuclear units are linked by an O–Hwater···N4,4'-bipyridine hydrogen bond to generate a linear chain structure (Table 1). The 4,4'-bipyridine molecule is disordered over two positions in a 1:1 ratio.

Experimental

3-Ethoxysalicylaldehyde (0.166 g, 1 mmol) and 2-furoylhydrazide (0.120 g, 1 mmol) were condensed in methanol (100 ml). The solution was heated to give a yellow coloration. The cool solution yielded the desired Schiff base as a yellow compound. The ligand (0.270 g, 1 mmol) and di(acetylacetonato)dioxomolybdenum(VI) (0.328 g, 1 mmol) were dissolved in heated in methanol for an hour. To the orange solution was added 4,4'-bipyridine (0.08 g, 0.5 mmol); heating was continued for another hour. The solution was filtered and set aside for the growth of crystals, m.p. 495–497 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times Ueq(C).

The water H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H 0.84±0.01 and H···H 1.37±0.01 Å; their temperature factors were refined.

The 4,4'-bipyridine molecule is disordered about a center-of-inversion. The pyridyl ring was refined as two rings that shared common N and and Cpara atoms. As the occupancy refined to nearly 1/2, the occupancy was then fixed as 0.5. Carbon–nitrogen distances were restrained to 1.35±0.01 Å and carbon–carbon distances to 1.39±0.01 Å. The six atoms of each ring were restrained to lie on a plane. Attempts to refined the disordered atoms anisotropically led to non-positive definites; the eight disordered atoms were then refined only isotropically.

Omitted from the refinement owing to bad disagreement were these reflections: (0 0 1), (-6 - 6 2), (4 - 5 4) and (3 9 7).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of MoO2(H2O)(C14H12N2O4).0.5C10H10N2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the 4,4'-bipyridine molecule is not shown.

Crystal data

[Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2 Z = 2
Mr = 496.30 F(000) = 502
Triclinic, P1 Dx = 1.685 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9237 (1) Å Cell parameters from 8273 reflections
b = 10.1869 (1) Å θ = 2.5–28.2°
c = 13.3215 (2) Å µ = 0.72 mm1
α = 78.7841 (5)° T = 100 K
β = 78.4605 (5)° Block, orange
γ = 69.5728 (5)° 0.2 × 0.2 × 0.2 mm
V = 978.15 (2) Å3

Data collection

Bruker SMART APEX diffractometer 4445 independent reflections
Radiation source: fine-focus sealed tube 4266 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.649, Tmax = 0.746 k = −13→13
9175 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.0897P] where P = (Fo2 + 2Fc2)/3
4445 reflections (Δ/σ)max = 0.001
275 parameters Δρmax = 0.73 e Å3
24 restraints Δρmin = −0.72 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mo1 0.74598 (2) 0.304217 (17) 0.170071 (12) 0.01695 (7)
O1 1.1355 (2) 0.30269 (16) −0.20486 (13) 0.0246 (3)
O2 0.9252 (2) 0.21432 (15) 0.05147 (12) 0.0195 (3)
O3 0.6036 (2) 0.46573 (17) 0.23935 (12) 0.0218 (3)
O4 0.3337 (2) 0.5786 (2) 0.37565 (13) 0.0304 (4)
O5 0.8232 (2) 0.17630 (17) 0.26946 (12) 0.0224 (3)
O6 0.5697 (2) 0.26804 (17) 0.13977 (12) 0.0223 (3)
O1W 0.9855 (2) 0.36664 (17) 0.18299 (12) 0.0210 (3)
H11 1.047 (3) 0.327 (3) 0.2310 (16) 0.028 (8)*
H12 1.017 (4) 0.435 (2) 0.150 (2) 0.043 (9)*
N1 0.8802 (2) 0.43227 (18) −0.05053 (13) 0.0173 (3)
N2 0.7547 (2) 0.47579 (18) 0.03625 (13) 0.0163 (3)
N3 1.1836 (3) 0.2227 (2) 0.33511 (17) 0.0305 (5)
C1 1.2652 (3) 0.2079 (3) −0.26360 (19) 0.0270 (5)
H1 1.3224 0.2325 −0.3310 0.032*
C2 1.3007 (3) 0.0757 (3) −0.2131 (2) 0.0275 (5)
H2 1.3847 −0.0080 −0.2377 0.033*
C3 1.1882 (3) 0.0854 (2) −0.11569 (18) 0.0229 (4)
H3 1.1818 0.0099 −0.0622 0.027*
C4 1.0916 (3) 0.2245 (2) −0.11444 (16) 0.0193 (4)
C5 0.9575 (3) 0.2954 (2) −0.03452 (16) 0.0176 (4)
C6 0.6621 (3) 0.6087 (2) 0.02969 (16) 0.0179 (4)
H6 0.6873 0.6688 −0.0314 0.022*
C7 0.5219 (3) 0.6710 (2) 0.11060 (16) 0.0197 (4)
C8 0.4088 (3) 0.8115 (2) 0.08794 (18) 0.0240 (4)
H8 0.4312 0.8640 0.0224 0.029*
C9 0.2662 (3) 0.8737 (3) 0.1600 (2) 0.0297 (5)
H9 0.1900 0.9680 0.1436 0.036*
C10 0.2339 (3) 0.7978 (3) 0.25712 (19) 0.0304 (5)
H10 0.1334 0.8398 0.3059 0.036*
C11 0.3482 (3) 0.6612 (3) 0.28256 (18) 0.0252 (5)
C12 0.4943 (3) 0.5964 (2) 0.20924 (16) 0.0207 (4)
C13 0.1903 (3) 0.6364 (3) 0.45495 (19) 0.0340 (6)
H13A 0.0704 0.6616 0.4318 0.041*
H13B 0.2028 0.7225 0.4722 0.041*
C14 0.2070 (4) 0.5235 (4) 0.5478 (2) 0.0386 (6)
H14A 0.1101 0.5580 0.6041 0.058*
H14B 0.3257 0.5005 0.5703 0.058*
H14C 0.1960 0.4385 0.5293 0.058*
C15 1.2028 (5) 0.0903 (4) 0.3618 (3) 0.0214 (8)* 0.50
H15 1.1241 0.0543 0.3384 0.026* 0.50
C16 1.3288 (5) −0.0028 (4) 0.4216 (3) 0.0206 (8)* 0.50
H16 1.3433 −0.1009 0.4325 0.025* 0.50
C15' 1.1327 (6) 0.1138 (4) 0.4102 (3) 0.0199 (8)* 0.50
H15' 1.0185 0.1015 0.4124 0.024* 0.50
C16' 1.2513 (5) 0.0266 (4) 0.4794 (3) 0.0208 (8)* 0.50
H16' 1.2182 −0.0413 0.5320 0.025* 0.50
C17 1.4335 (4) 0.0471 (2) 0.4655 (2) 0.0340 (6)
C18 1.4347 (8) 0.1850 (6) 0.4256 (5) 0.0223 (19)* 0.50
H18 1.5229 0.2190 0.4409 0.027* 0.50
C19 1.3061 (8) 0.2709 (7) 0.3637 (4) 0.0284 (19)* 0.50
H19 1.3025 0.3660 0.3403 0.034* 0.50
C18' 1.4505 (8) 0.1689 (6) 0.4113 (5) 0.0148 (14)* 0.50
H18' 1.5499 0.1977 0.4166 0.018* 0.50
C19' 1.3228 (6) 0.2528 (5) 0.3477 (4) 0.0116 (11)* 0.50
H19' 1.3389 0.3383 0.3109 0.014* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.01730 (11) 0.01891 (11) 0.01575 (11) −0.00872 (7) −0.00505 (7) 0.00321 (7)
O1 0.0285 (8) 0.0188 (7) 0.0251 (8) −0.0096 (6) 0.0024 (6) −0.0023 (6)
O2 0.0230 (7) 0.0158 (7) 0.0197 (7) −0.0081 (6) −0.0036 (6) 0.0017 (5)
O3 0.0227 (7) 0.0251 (8) 0.0170 (7) −0.0075 (6) −0.0037 (6) −0.0008 (6)
O4 0.0255 (8) 0.0428 (10) 0.0201 (8) −0.0114 (8) 0.0031 (6) −0.0039 (7)
O5 0.0226 (7) 0.0246 (8) 0.0220 (7) −0.0124 (6) −0.0085 (6) 0.0068 (6)
O6 0.0212 (7) 0.0279 (8) 0.0204 (7) −0.0117 (6) −0.0057 (6) 0.0007 (6)
O1W 0.0224 (8) 0.0227 (8) 0.0212 (7) −0.0133 (6) −0.0097 (6) 0.0074 (6)
N1 0.0178 (8) 0.0179 (8) 0.0163 (8) −0.0066 (7) −0.0023 (6) −0.0013 (6)
N2 0.0162 (8) 0.0193 (8) 0.0140 (8) −0.0062 (7) −0.0041 (6) −0.0011 (6)
N3 0.0383 (12) 0.0186 (9) 0.0381 (12) −0.0039 (8) −0.0241 (9) −0.0027 (8)
C1 0.0269 (11) 0.0288 (11) 0.0255 (11) −0.0111 (9) 0.0035 (9) −0.0081 (9)
C2 0.0260 (11) 0.0220 (11) 0.0355 (13) −0.0066 (9) −0.0012 (9) −0.0116 (9)
C3 0.0216 (10) 0.0179 (10) 0.0285 (11) −0.0063 (8) −0.0049 (8) −0.0006 (8)
C4 0.0196 (9) 0.0186 (10) 0.0217 (10) −0.0087 (8) −0.0045 (8) −0.0010 (8)
C5 0.0177 (9) 0.0182 (9) 0.0192 (9) −0.0082 (8) −0.0062 (7) 0.0002 (7)
C6 0.0191 (9) 0.0193 (9) 0.0165 (9) −0.0071 (8) −0.0065 (7) 0.0006 (7)
C7 0.0183 (9) 0.0222 (10) 0.0198 (10) −0.0054 (8) −0.0063 (8) −0.0046 (8)
C8 0.0235 (11) 0.0244 (11) 0.0223 (10) −0.0030 (9) −0.0078 (8) −0.0036 (8)
C9 0.0230 (11) 0.0308 (12) 0.0308 (12) 0.0022 (9) −0.0088 (9) −0.0091 (10)
C10 0.0195 (10) 0.0425 (14) 0.0272 (12) −0.0035 (10) −0.0025 (9) −0.0133 (10)
C11 0.0204 (10) 0.0371 (13) 0.0209 (10) −0.0115 (9) −0.0031 (8) −0.0061 (9)
C12 0.0185 (10) 0.0252 (10) 0.0203 (10) −0.0077 (8) −0.0053 (8) −0.0039 (8)
C13 0.0256 (12) 0.0534 (16) 0.0240 (11) −0.0151 (11) 0.0054 (9) −0.0122 (11)
C14 0.0331 (14) 0.0623 (19) 0.0219 (12) −0.0197 (13) 0.0026 (10) −0.0080 (12)
C17 0.0435 (15) 0.0168 (10) 0.0499 (16) −0.0094 (10) −0.0341 (13) 0.0040 (10)

Geometric parameters (Å, °)

Mo1—O6 1.7007 (15) C7—C8 1.410 (3)
Mo1—O5 1.7093 (15) C8—C9 1.379 (3)
Mo1—O3 1.9262 (16) C8—H8 0.9500
Mo1—O2 2.0270 (15) C9—C10 1.398 (4)
Mo1—O1W 2.2479 (15) C9—H9 0.9500
Mo1—N2 2.2495 (17) C10—C11 1.389 (4)
O1—C4 1.364 (3) C10—H10 0.9500
O1—C1 1.371 (3) C11—C12 1.413 (3)
O2—C5 1.313 (2) C13—C14 1.509 (4)
O3—C12 1.345 (3) C13—H13A 0.9900
O4—C11 1.365 (3) C13—H13B 0.9900
O4—C13 1.431 (3) C14—H14A 0.9800
O1W—H11 0.833 (10) C14—H14B 0.9800
O1W—H12 0.837 (11) C14—H14C 0.9800
N1—C5 1.305 (3) C15—C16 1.377 (5)
N1—N2 1.398 (2) C15—H15 0.9500
N2—C6 1.291 (3) C16—C17 1.376 (4)
N3—C15 1.288 (4) C16—H16 0.9500
N3—C19' 1.291 (5) C15'—C16' 1.403 (5)
N3—C19 1.371 (6) C15'—H15' 0.9500
N3—C15' 1.454 (4) C16'—C17 1.500 (5)
C1—C2 1.344 (4) C16'—H16' 0.9500
C1—H1 0.9500 C17—C18' 1.345 (5)
C2—C3 1.419 (3) C17—C18 1.405 (6)
C2—H2 0.9500 C17—C17i 1.487 (4)
C3—C4 1.356 (3) C18—C19 1.386 (7)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.448 (3) C19—H19 0.9500
C6—C7 1.447 (3) C18'—C19' 1.389 (6)
C6—H6 0.9500 C18'—H18' 0.9500
C7—C12 1.402 (3) C19'—H19' 0.9500
O6—Mo1—O5 105.24 (7) C8—C9—H9 120.0
O6—Mo1—O3 97.40 (7) C10—C9—H9 120.0
O5—Mo1—O3 103.06 (7) C11—C10—C9 120.2 (2)
O6—Mo1—O2 93.86 (7) C11—C10—H10 119.9
O5—Mo1—O2 98.70 (7) C9—C10—H10 119.9
O3—Mo1—O2 151.84 (6) O4—C11—C10 125.6 (2)
O6—Mo1—O1W 170.71 (7) O4—C11—C12 114.2 (2)
O5—Mo1—O1W 82.87 (6) C10—C11—C12 120.2 (2)
O3—Mo1—O1W 84.91 (6) O3—C12—C7 123.18 (19)
O2—Mo1—O1W 80.25 (6) O3—C12—C11 117.5 (2)
O6—Mo1—N2 95.98 (7) C7—C12—C11 119.3 (2)
O5—Mo1—N2 157.48 (7) O4—C13—C14 106.5 (2)
O3—Mo1—N2 81.20 (6) O4—C13—H13A 110.4
O2—Mo1—N2 71.99 (6) C14—C13—H13A 110.4
O1W—Mo1—N2 75.43 (6) O4—C13—H13B 110.4
C4—O1—C1 105.58 (18) C14—C13—H13B 110.4
C5—O2—Mo1 118.96 (13) H13A—C13—H13B 108.6
C12—O3—Mo1 134.52 (14) C13—C14—H14A 109.5
C11—O4—C13 118.0 (2) C13—C14—H14B 109.5
Mo1—O1W—H11 120.4 (18) H14A—C14—H14B 109.5
Mo1—O1W—H12 128.8 (19) C13—C14—H14C 109.5
H11—O1W—H12 110.1 (17) H14A—C14—H14C 109.5
C5—N1—N2 109.13 (17) H14B—C14—H14C 109.5
C6—N2—N1 115.97 (17) N3—C15—C16 124.9 (4)
C6—N2—Mo1 128.78 (14) N3—C15—H15 117.5
N1—N2—Mo1 115.24 (12) C16—C15—H15 117.5
C15—N3—C19 116.8 (4) C17—C16—C15 119.5 (4)
C19'—N3—C15' 117.2 (3) C17—C16—H16 120.2
C2—C1—O1 110.9 (2) C15—C16—H16 120.2
C2—C1—H1 124.5 C16'—C15'—N3 120.4 (4)
O1—C1—H1 124.5 C16'—C15'—H15' 119.8
C1—C2—C3 106.6 (2) N3—C15'—H15' 119.8
C1—C2—H2 126.7 C15'—C16'—C17 116.0 (3)
C3—C2—H2 126.7 C15'—C16'—H16' 122.0
C4—C3—C2 106.1 (2) C17—C16'—H16' 122.0
C4—C3—H3 126.9 C16—C17—C18 115.8 (3)
C2—C3—H3 126.9 C18'—C17—C17i 122.4 (3)
C3—C4—O1 110.83 (19) C16—C17—C17i 122.2 (3)
C3—C4—C5 130.1 (2) C18—C17—C17i 120.9 (3)
O1—C4—C5 119.02 (18) C18'—C17—C16' 117.6 (3)
N1—C5—O2 124.54 (19) C17i—C17—C16' 117.9 (3)
N1—C5—C4 119.62 (19) C19—C18—C17 119.3 (5)
O2—C5—C4 115.83 (18) C19—C18—H18 120.4
N2—C6—C7 123.35 (19) C17—C18—H18 120.4
N2—C6—H6 118.3 N3—C19—C18 121.9 (6)
C7—C6—H6 118.3 N3—C19—H19 119.1
C12—C7—C8 119.5 (2) C18—C19—H19 119.1
C12—C7—C6 122.4 (2) C17—C18'—C19' 120.1 (4)
C8—C7—C6 118.11 (19) C17—C18'—H18' 119.9
C9—C8—C7 120.7 (2) C19'—C18'—H18' 119.9
C9—C8—H8 119.7 N3—C19'—C18' 124.6 (4)
C7—C8—H8 119.7 N3—C19'—H19' 117.7
C8—C9—C10 120.0 (2) C18'—C19'—H19' 117.7
O6—Mo1—O2—C5 97.28 (15) C13—O4—C11—C12 179.4 (2)
O5—Mo1—O2—C5 −156.65 (15) C9—C10—C11—O4 177.9 (2)
O3—Mo1—O2—C5 −16.3 (2) C9—C10—C11—C12 −2.1 (4)
O1W—Mo1—O2—C5 −75.49 (14) Mo1—O3—C12—C7 −32.0 (3)
N2—Mo1—O2—C5 2.25 (14) Mo1—O3—C12—C11 149.69 (17)
O6—Mo1—O3—C12 −66.0 (2) C8—C7—C12—O3 −175.3 (2)
O5—Mo1—O3—C12 −173.64 (19) C6—C7—C12—O3 5.3 (3)
O2—Mo1—O3—C12 46.7 (3) C8—C7—C12—C11 3.0 (3)
O1W—Mo1—O3—C12 104.91 (19) C6—C7—C12—C11 −176.4 (2)
N2—Mo1—O3—C12 28.90 (19) O4—C11—C12—O3 −2.0 (3)
C5—N1—N2—C6 −177.34 (18) C10—C11—C12—O3 178.0 (2)
C5—N1—N2—Mo1 3.9 (2) O4—C11—C12—C7 179.61 (19)
O6—Mo1—N2—C6 85.90 (18) C10—C11—C12—C7 −0.3 (3)
O5—Mo1—N2—C6 −113.6 (2) C11—O4—C13—C14 180.0 (2)
O3—Mo1—N2—C6 −10.70 (18) C19'—N3—C15—C16 16.4 (3)
O2—Mo1—N2—C6 178.02 (19) C19—N3—C15—C16 4.2 (3)
O1W—Mo1—N2—C6 −97.69 (18) C15'—N3—C15—C16 −89.7 (5)
O6—Mo1—N2—N1 −95.50 (14) N3—C15—C16—C17 6.3 (3)
O5—Mo1—N2—N1 65.0 (2) C15—N3—C15'—C16' 76.3 (5)
O3—Mo1—N2—N1 167.90 (14) C19'—N3—C15'—C16' −12.7 (5)
O2—Mo1—N2—N1 −3.38 (12) C19—N3—C15'—C16' −25.7 (5)
O1W—Mo1—N2—N1 80.91 (13) N3—C15'—C16'—C17 −4.0 (5)
C4—O1—C1—C2 0.5 (3) C15—C16—C17—C18' −25.2 (4)
O1—C1—C2—C3 −0.4 (3) C15—C16—C17—C18 −14.9 (4)
C1—C2—C3—C4 0.1 (3) C15—C16—C17—C17i 177.4 (3)
C2—C3—C4—O1 0.2 (3) C15—C16—C17—C16' 82.9 (4)
C2—C3—C4—C5 −179.5 (2) C15'—C16'—C17—C18' 18.8 (6)
C1—O1—C4—C3 −0.4 (2) C15'—C16'—C17—C16 −70.2 (4)
C1—O1—C4—C5 179.28 (19) C15'—C16'—C17—C18 30.1 (5)
N2—N1—C5—O2 −2.2 (3) C15'—C16'—C17—C17i −177.6 (3)
N2—N1—C5—C4 179.02 (17) C18'—C17—C18—C19 80 (2)
Mo1—O2—C5—N1 −0.9 (3) C16—C17—C18—C19 13.7 (6)
Mo1—O2—C5—C4 177.96 (13) C17i—C17—C18—C19 −178.5 (5)
C3—C4—C5—N1 −179.8 (2) C16'—C17—C18—C19 −27.0 (6)
O1—C4—C5—N1 0.6 (3) C15—N3—C19—C18 −5.3 (6)
C3—C4—C5—O2 1.3 (3) C19'—N3—C19—C18 −76 (2)
O1—C4—C5—O2 −178.33 (18) C15'—N3—C19—C18 30.5 (6)
N1—N2—C6—C7 177.65 (18) C17—C18—C19—N3 −3.8 (7)
Mo1—N2—C6—C7 −3.8 (3) C16—C17—C18'—C19' 22.4 (7)
N2—C6—C7—C12 10.2 (3) C18—C17—C18'—C19' −95 (2)
N2—C6—C7—C8 −169.2 (2) C17i—C17—C18'—C19' 179.8 (5)
C12—C7—C8—C9 −3.2 (3) C16'—C17—C18'—C19' −17.4 (7)
C6—C7—C8—C9 176.2 (2) C15—N3—C19'—C18' −19.5 (7)
C7—C8—C9—C10 0.8 (4) C19—N3—C19'—C18' 95 (2)
C8—C9—C10—C11 1.9 (4) C15'—N3—C19'—C18' 15.7 (7)
C13—O4—C11—C10 −0.6 (3) C17—C18'—C19'—N3 −0.3 (9)

Symmetry codes: (i) −x+3, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1w—H11···N3 0.83 (1) 1.86 (1) 2.689 (3) 174 (3)
O1w—H12···N1ii 0.84 (1) 1.97 (1) 2.794 (2) 167 (3)

Symmetry codes: (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2290).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375–2382.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017260/jh2290sup1.cif

e-67-0m748-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017260/jh2290Isup2.hkl

e-67-0m748-Isup2.hkl (217.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES