Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 14;67(Pt 6):o1427. doi: 10.1107/S1600536811017168

2-(2-Meth­oxy­phen­yl)-1-benzofuran

Michaela Pojarová a,*, Michal Dušek a, Andrej Jančařík b, Emanuel Makrlík c, Zdeňka Sedláková d
PMCID: PMC3120470  PMID: 21754807

Abstract

In the title compound, C15H12O2, the dihedral angle between the aromatic ring systems is 16.67 (6)°. The methyl C atom is almost coplanar with its attached benzene ring [displacement = 0.020 (2) Å]. In the crystal, the mol­ecules are connected by weak C—H⋯O bonds and face-to-edge C—H⋯π inter­actions between the 2-meth­oxy­phenyl rings.

Related literature

For the biological activity of related compounds, see: Akgul & Anil (2003); Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005); Soekamto et al. (2003). For the synthesis, see: Takeda et al. (2007).graphic file with name e-67-o1427-scheme1.jpg

Experimental

Crystal data

  • C15H12O2

  • M r = 224.25

  • Orthorhombic, Inline graphic

  • a = 6.9419 (1) Å

  • b = 11.4409 (2) Å

  • c = 14.1703 (3) Å

  • V = 1125.43 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 120 K

  • 0.27 × 0.25 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.683, T max = 1.000

  • 11347 measured reflections

  • 2006 independent reflections

  • 1955 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.088

  • S = 1.09

  • 2006 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 822 Friedel pairs

  • Flack parameter: −0.2 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017168/hb5866sup1.cif

e-67-o1427-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017168/hb5866Isup2.hkl

e-67-o1427-Isup2.hkl (98.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.96 2.57 3.272 (2) 131
C3—H3⋯Cg1ii 0.93 2.78 3.604 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Institutional research plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Sciences of the Czech Republic and the Czech Ministry of Education, Youth and Sports, project MSM 4977751303.

supplementary crystallographic information

Comment

A wide range of natural products with diverse pharmaceutical properties, such as antifungal, antitumor, antiviral, and antimicrobial (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005), contain a benzofuran ring (Akgul & Anil, 2003; Soekamto et al., 2003). In this paper, we present a crystal structure of the title compound, (I).

The benzofuran unit is essentially planar, with a mean deviation of 0.019 (2)Å from the least-square plane defined by the nine atoms in benzofuran ring. The methoxy group forms intermolecular hydrogen bond to the oxygen in benzofuran ring (Table 1). Another weak interactions found in the crystal is the C—H···π interaction between the 2-methoxyphenyl rings [C3—H3···Cg1 (C2 → C7)] which is responsible for their edge-to-face orientation (Fig. 2).

Experimental

2-(2'-methoxyphenyl]-benzo[b]furan was synthesized by the method described by Takeda (Takeda et al., 2007). Crystals were prepared by slow evaporation from acetonitrile.

Refinement

The hydrogen atoms were localized from the difference Fourier map. Despite of that, all hydrogen atoms connected to C were constrained to ideal positions. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids shown at the 50% probability level.

Fig. 2.

Fig. 2.

Projection along the b axis with highlighted face-to-edge CH-π interactions between methoxyphenyl rings.

Crystal data

C15H12O2 F(000) = 472
Mr = 224.25 Dx = 1.323 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ab 2ac Cell parameters from 7843 reflections
a = 6.9419 (1) Å θ = 3.1–66.9°
b = 11.4409 (2) Å µ = 0.70 mm1
c = 14.1703 (3) Å T = 120 K
V = 1125.43 (3) Å3 Plate, colourless
Z = 4 0.27 × 0.25 × 0.12 mm

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer 2006 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 1955 reflections with I > 2σ(I)
mirror Rint = 0.050
Detector resolution: 10.3748 pixels mm-1 θmax = 67.1°, θmin = 5.0°
Rotation method data acquisition using ω scans h = −8→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −13→13
Tmin = 0.683, Tmax = 1.000 l = −16→14
11347 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.153P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2006 reflections Δρmax = 0.20 e Å3
155 parameters Δρmin = −0.14 e Å3
0 restraints Absolute structure: Flack (1983), 822 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.2 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were localized from the difference Fourier map. Despite of that,all hydrogen atoms connected to C were constrained to ideal positions. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.06771 (15) 0.13587 (9) 0.33592 (7) 0.0323 (3)
O2 0.61359 (14) 0.36286 (9) 0.28934 (7) 0.0293 (3)
C2 1.0779 (2) 0.24444 (13) 0.37522 (10) 0.0282 (3)
C11 0.4903 (2) 0.32298 (13) 0.22083 (10) 0.0281 (3)
C6 0.9320 (2) 0.43475 (13) 0.38967 (10) 0.0301 (3)
H6 0.8355 0.4875 0.3737 0.036*
C7 0.9277 (2) 0.32219 (13) 0.35139 (10) 0.0275 (3)
C3 1.2221 (2) 0.27897 (14) 0.43667 (11) 0.0319 (3)
H3 1.3202 0.2272 0.4525 0.038*
C15 0.4610 (2) 0.17104 (13) 0.10446 (11) 0.0322 (3)
H15 0.5069 0.1044 0.0743 0.039*
C9 0.7486 (2) 0.20323 (12) 0.22207 (11) 0.0295 (3)
H9 0.8343 0.1430 0.2087 0.035*
C14 0.2874 (2) 0.22039 (14) 0.07865 (11) 0.0344 (4)
H14 0.2165 0.1869 0.0300 0.041*
C5 1.0769 (2) 0.46960 (13) 0.45085 (11) 0.0333 (3)
H5 1.0774 0.5449 0.4755 0.040*
C10 0.5664 (2) 0.22374 (13) 0.17718 (10) 0.0283 (3)
C8 0.7723 (2) 0.28854 (12) 0.28798 (10) 0.0268 (3)
C13 0.2159 (2) 0.31977 (14) 0.12430 (11) 0.0346 (4)
H13 0.0980 0.3505 0.1055 0.041*
C12 0.3160 (2) 0.37352 (14) 0.19675 (11) 0.0333 (3)
H12 0.2690 0.4395 0.2274 0.040*
C1 1.2147 (3) 0.05403 (14) 0.36035 (12) 0.0382 (4)
H1A 1.3373 0.0828 0.3394 0.046*
H1B 1.1884 −0.0196 0.3305 0.046*
H1C 1.2171 0.0438 0.4276 0.046*
C4 1.2206 (2) 0.39125 (14) 0.47490 (11) 0.0352 (4)
H4 1.3168 0.4136 0.5168 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0364 (5) 0.0258 (5) 0.0348 (5) 0.0044 (5) −0.0035 (5) −0.0030 (4)
O2 0.0288 (5) 0.0280 (5) 0.0311 (5) 0.0011 (4) 0.0007 (4) −0.0013 (4)
C2 0.0321 (7) 0.0253 (7) 0.0272 (7) −0.0002 (6) 0.0043 (6) 0.0028 (5)
C11 0.0276 (6) 0.0282 (7) 0.0284 (7) −0.0049 (6) 0.0025 (6) 0.0041 (6)
C6 0.0328 (8) 0.0259 (7) 0.0317 (7) 0.0009 (6) 0.0005 (6) 0.0025 (6)
C7 0.0300 (7) 0.0253 (7) 0.0271 (7) −0.0013 (6) 0.0031 (6) 0.0029 (6)
C3 0.0322 (7) 0.0303 (7) 0.0331 (8) 0.0005 (7) −0.0021 (6) 0.0049 (6)
C15 0.0370 (8) 0.0273 (7) 0.0324 (7) −0.0031 (6) −0.0008 (6) 0.0006 (6)
C9 0.0320 (7) 0.0251 (7) 0.0314 (8) 0.0011 (6) 0.0007 (6) −0.0008 (6)
C14 0.0351 (8) 0.0332 (8) 0.0349 (8) −0.0076 (7) −0.0039 (7) 0.0039 (6)
C5 0.0388 (8) 0.0257 (7) 0.0352 (8) −0.0034 (7) −0.0023 (7) −0.0010 (6)
C10 0.0307 (7) 0.0251 (7) 0.0291 (7) −0.0032 (6) 0.0026 (6) 0.0033 (6)
C8 0.0279 (6) 0.0235 (7) 0.0289 (7) 0.0008 (6) 0.0030 (6) 0.0033 (6)
C13 0.0276 (7) 0.0372 (8) 0.0389 (8) −0.0024 (7) −0.0013 (6) 0.0072 (7)
C12 0.0318 (7) 0.0309 (8) 0.0373 (8) 0.0014 (7) 0.0046 (6) 0.0029 (6)
C1 0.0394 (8) 0.0316 (8) 0.0437 (9) 0.0092 (7) −0.0027 (7) −0.0036 (7)
C4 0.0382 (8) 0.0326 (8) 0.0348 (8) −0.0048 (7) −0.0059 (7) 0.0015 (6)

Geometric parameters (Å, °)

O1—C2 1.3630 (18) C15—H15 0.9300
O1—C1 1.4273 (18) C9—C8 1.361 (2)
O2—C11 1.3723 (18) C9—C10 1.435 (2)
O2—C8 1.3921 (17) C9—H9 0.9300
C2—C3 1.384 (2) C14—C13 1.399 (2)
C2—C7 1.411 (2) C14—H14 0.9300
C11—C12 1.384 (2) C5—C4 1.384 (2)
C11—C10 1.397 (2) C5—H5 0.9300
C6—C5 1.386 (2) C13—C12 1.384 (2)
C6—C7 1.398 (2) C13—H13 0.9300
C6—H6 0.9300 C12—H12 0.9300
C7—C8 1.456 (2) C1—H1A 0.9600
C3—C4 1.394 (2) C1—H1B 0.9600
C3—H3 0.9300 C1—H1C 0.9600
C15—C14 1.380 (2) C4—H4 0.9300
C15—C10 1.400 (2)
C2—O1—C1 117.50 (12) C13—C14—H14 119.3
C11—O2—C8 106.31 (11) C4—C5—C6 119.38 (14)
O1—C2—C3 123.68 (14) C4—C5—H5 120.3
O1—C2—C7 116.00 (14) C6—C5—H5 120.3
C3—C2—C7 120.31 (13) C11—C10—C15 118.58 (14)
O2—C11—C12 125.51 (14) C11—C10—C9 105.67 (13)
O2—C11—C10 110.34 (13) C15—C10—C9 135.74 (15)
C12—C11—C10 124.14 (14) C9—C8—O2 110.60 (12)
C5—C6—C7 121.56 (14) C9—C8—C7 134.67 (14)
C5—C6—H6 119.2 O2—C8—C7 114.61 (11)
C7—C6—H6 119.2 C12—C13—C14 121.74 (15)
C6—C7—C2 118.17 (14) C12—C13—H13 119.1
C6—C7—C8 119.94 (13) C14—C13—H13 119.1
C2—C7—C8 121.89 (13) C11—C12—C13 115.87 (15)
C2—C3—C4 120.13 (15) C11—C12—H12 122.1
C2—C3—H3 119.9 C13—C12—H12 122.1
C4—C3—H3 119.9 O1—C1—H1A 109.5
C14—C15—C10 118.36 (15) O1—C1—H1B 109.5
C14—C15—H15 120.8 H1A—C1—H1B 109.5
C10—C15—H15 120.8 O1—C1—H1C 109.5
C8—C9—C10 107.07 (13) H1A—C1—H1C 109.5
C8—C9—H9 126.5 H1B—C1—H1C 109.5
C10—C9—H9 126.5 C5—C4—C3 120.42 (15)
C15—C14—C13 121.31 (15) C5—C4—H4 119.8
C15—C14—H14 119.3 C3—C4—H4 119.8

Hydrogen-bond geometry (°)

Cg1 is the centroid of the C2–C7 ring.
D—H···A
—···
—···

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5866).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Galal, S. A., Abd El-All, A. S., Abdalah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428. [DOI] [PubMed]
  5. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805. [DOI] [PubMed]
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]
  10. Takeda, N., Miyata, O. & Naito, T. (2007). Eur. J. Org. Chem 9, 1491–1509.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017168/hb5866sup1.cif

e-67-o1427-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017168/hb5866Isup2.hkl

e-67-o1427-Isup2.hkl (98.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES