Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1301–o1302. doi: 10.1107/S1600536811016023

(3E,5E)-1-Acryloyl-3,5-bis­(2,4-dichloro­benzyl­idene)piperidin-4-one hemihydrate

Alireza Basiri a, Vikneswaran Murugaiyah a,, Hasnah Osman b, Madhukar Hemamalini c, Hoong-Kun Fun c,*,§
PMCID: PMC3120482  PMID: 21754705

Abstract

The asymmetric unit of the title compound, C22H15Cl4NO2·0.5H2O, consists of a (3E,5E)-1-acryloyl-3,5-bis­(2,4-dichloro­benzyl­idene)piperidin-4-one mol­ecule and a half-mol­ecule of water (the O atom of the water mol­ecule lies on a twofold axis). The piperidin-4-one ring adopts an envelope conformation. The dihedral angle between the two terminal benzene rings is 8.84 (11)°. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds forming supra­molecular chains along the c axis. Furthermore, adjacent chains are inter­connected by the water mol­ecules via O—H⋯O hydrogen bonds.

Related literature

For details and applications of α,β-unsaturated carbonyl compounds, see: Oh et al. (2006); El-Subbagh et al. (2000); Husain et al. (2006); Favier et al. (2005). For details of the preparation, see: Dimmock et al. (2000). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-67-o1301-scheme1.jpg

Experimental

Crystal data

  • 2C22H15Cl4NO2·H2O

  • M r = 952.32

  • Monoclinic, Inline graphic

  • a = 27.0296 (12) Å

  • b = 11.3031 (5) Å

  • c = 18.9580 (14) Å

  • β = 133.807 (2)°

  • V = 4180.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.41 × 0.22 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.794, T max = 0.947

  • 22264 measured reflections

  • 6084 independent reflections

  • 3314 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.140

  • S = 1.04

  • 6084 reflections

  • 273 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016023/sj5130sup1.cif

e-67-o1301-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016023/sj5130Isup2.hkl

e-67-o1301-Isup2.hkl (291.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016023/sj5130Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 1.05 2.19 3.180 (3) 157
C4—H4A⋯O1ii 0.93 2.29 3.186 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AB, VM and HO thank the Malaysian Government and Universiti Sains Malaysia (USM) for providing financial support and the USM Graduate Scheme. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The α,β-unsaturated carbonyl moiety is present in a large number of natural and synthetic products which are products of the Claisen-Schmidt condensation reaction. They exhibit wide variety of biological activities such as cytotoxicity (Oh et al., 2006), antitumor (El-Subbagh et al., 2000) and antimicrobial (Husain et al., 2006) properties. Furthermore, it has been shown that the conjugated system plays a fundamental role in determining the bioactivity, due to its ability to act as a Michael acceptor for the addition of protein functional groups (Favier et al., 2005). The title compound (I), is a new piperidin-4-one derivative.

The asymmetric unit of the title compound consists of a (3E,5E)-1-acryloyl-3,5-bis(2,4-dichlorobenzylidene) piperidin-4-one molecule and a half-molecule of water (the O atom of the water molecule lies on a twofold axis), as shown in Fig. 1. The dihedral angle between the two terminal phenyl (C1–C6:C15–C20) rings is 8.84 (11)°. The piperidine (N12/C8–C11/C13) ring adopts an envelope conformation [puckering parameters: Q = 0.508 (3) Å, θ = 122.4 (3)° and φ = 182.1 (4)°; (Cremer & Pople, 1975)] with atoms C11 and C13 deviating by 0.233 (2) and 0.217 (3) Å from the least-squares plane defined by the remaining atoms (N12/C8–C10) in the ring.

In the crystal structure, (Fig. 2), the molecules are connected by intermolecular C4—H4A···O1 hydrogen bonds forming one-dimensional supramolecular chains along the c-axis. Furthermore, adjacent chains are inter-connected by water molecules via O1W—H1W1···O2 hydrogen bonds.

Experimental

3,5-bis(2,4-dichlorobenzylidene)piperidin-4-one was synthesized by the method described by Dimmock et al., (2000). Briefly, the title compound (I) was prepared by dropwise addition of acryloyl chloride solution (7.24 mmol) to stirring mixture of 3,5-bis(2,4-dichlorobenzylidene) piperidin-4-one (4.82 mmol) and acetone (10 ml) in presence of weak base at room temperature. After completion of the reaction (through TLC monitoring), the mixture was poured into ice. The precipitate was filtered and washed with water. The pure solid was then recrystallized from ethanol to afford the title compound as yellow crystals.

Refinement

Atoms H23A and H23B were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [O–H = 1.0501 Å ] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I) with hydrogen bonds shown as dashed lines. H atoms not involved in the intermolecular interactions have been omitted for clarity.

Crystal data

2C22H15Cl4NO2·H2O F(000) = 1944
Mr = 952.32 Dx = 1.513 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4558 reflections
a = 27.0296 (12) Å θ = 3.0–23.7°
b = 11.3031 (5) Å µ = 0.59 mm1
c = 18.9580 (14) Å T = 296 K
β = 133.807 (2)° Plate, yellow
V = 4180.0 (4) Å3 0.41 × 0.22 × 0.09 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6084 independent reflections
Radiation source: fine-focus sealed tube 3314 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −37→37
Tmin = 0.794, Tmax = 0.947 k = −15→15
22264 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 1.3835P] where P = (Fo2 + 2Fc2)/3
6084 reflections (Δ/σ)max < 0.001
273 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.19792 (3) 0.76399 (7) 0.69001 (5) 0.0713 (2)
Cl2 0.42591 (5) 0.54693 (7) 0.82870 (7) 0.0917 (3)
Cl3 0.03129 (4) 0.56068 (7) 1.19385 (5) 0.0758 (2)
Cl4 −0.03353 (4) 0.74207 (6) 0.87822 (6) 0.0793 (2)
O1 0.18932 (9) 0.28214 (16) 0.88038 (12) 0.0674 (5)
O1W 0.0000 0.0870 (4) 0.2500 0.1570 (17)
H1W1 −0.0368 0.1548 0.2124 0.235*
O2 0.13682 (9) 0.76238 (14) 0.86903 (13) 0.0622 (5)
C1 0.33740 (12) 0.57044 (19) 0.92958 (17) 0.0525 (6)
H1A 0.3468 0.5447 0.9845 0.063*
C2 0.38244 (13) 0.5423 (2) 0.92100 (19) 0.0599 (6)
H2A 0.4215 0.4978 0.9691 0.072*
C3 0.36913 (13) 0.5808 (2) 0.84014 (19) 0.0553 (6)
C4 0.31230 (12) 0.64792 (19) 0.76899 (17) 0.0520 (6)
H4A 0.3040 0.6748 0.7152 0.062*
C5 0.26793 (11) 0.67438 (18) 0.77940 (15) 0.0463 (5)
C6 0.27789 (11) 0.63624 (18) 0.85892 (15) 0.0432 (5)
C7 0.23003 (11) 0.66960 (19) 0.86785 (15) 0.0450 (5)
H7A 0.2063 0.7399 0.8371 0.054*
C8 0.21566 (11) 0.61329 (18) 0.91388 (14) 0.0428 (5)
C9 0.16516 (11) 0.66934 (18) 0.91293 (15) 0.0450 (5)
C10 0.15150 (11) 0.61138 (17) 0.96889 (14) 0.0415 (5)
C11 0.18741 (13) 0.49604 (19) 1.02007 (17) 0.0514 (6)
H11A 0.2303 0.5116 1.0866 0.062*
H11B 0.1589 0.4479 1.0226 0.062*
N12 0.20085 (11) 0.43276 (15) 0.96822 (15) 0.0519 (5)
C13 0.24670 (13) 0.4960 (2) 0.96662 (18) 0.0544 (6)
H13A 0.2556 0.4483 0.9339 0.065*
H13B 0.2900 0.5100 1.0331 0.065*
C14 0.10773 (11) 0.66486 (18) 0.96949 (15) 0.0435 (5)
H14A 0.0858 0.7311 0.9294 0.052*
C15 0.08921 (11) 0.63488 (17) 1.02373 (15) 0.0412 (5)
C16 0.02599 (12) 0.66960 (18) 0.98959 (16) 0.0485 (5)
C17 0.00789 (12) 0.64771 (19) 1.04118 (18) 0.0525 (6)
H17A −0.0346 0.6715 1.0165 0.063*
C18 0.05393 (12) 0.5901 (2) 1.12973 (17) 0.0505 (6)
C19 0.11714 (12) 0.5554 (2) 1.16688 (16) 0.0513 (6)
H19A 0.1481 0.5171 1.2269 0.062*
C20 0.13390 (11) 0.57787 (19) 1.11453 (15) 0.0462 (5)
H20A 0.1767 0.5543 1.1404 0.055*
C21 0.17589 (12) 0.3248 (2) 0.92493 (16) 0.0501 (6)
C22 0.13274 (16) 0.2603 (2) 0.9335 (2) 0.0657 (7)
H22A 0.1364 0.2797 0.9847 0.079*
C23 0.09076 (18) 0.1794 (3) 0.8743 (2) 0.0836 (9)
H23A 0.0609 (16) 0.130 (3) 0.877 (2) 0.100*
H23B 0.0891 (17) 0.161 (3) 0.826 (2) 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0626 (4) 0.0989 (5) 0.0619 (4) 0.0183 (3) 0.0467 (3) 0.0281 (3)
Cl2 0.1113 (7) 0.0861 (5) 0.1412 (7) 0.0305 (4) 0.1113 (6) 0.0297 (5)
Cl3 0.0849 (5) 0.1020 (6) 0.0794 (4) −0.0122 (4) 0.0715 (4) −0.0143 (4)
Cl4 0.0618 (4) 0.0870 (5) 0.0905 (5) 0.0289 (4) 0.0533 (4) 0.0392 (4)
O1 0.0783 (13) 0.0780 (12) 0.0699 (11) 0.0054 (9) 0.0603 (11) −0.0090 (9)
O1W 0.191 (5) 0.105 (3) 0.240 (5) 0.000 0.174 (4) 0.000
O2 0.0806 (12) 0.0583 (10) 0.0728 (11) 0.0209 (8) 0.0626 (10) 0.0227 (8)
C1 0.0539 (14) 0.0573 (13) 0.0553 (13) −0.0014 (11) 0.0412 (12) 0.0075 (11)
C2 0.0550 (15) 0.0579 (14) 0.0759 (16) 0.0061 (11) 0.0487 (14) 0.0129 (12)
C3 0.0637 (16) 0.0483 (12) 0.0806 (16) −0.0016 (11) 0.0600 (14) 0.0012 (11)
C4 0.0634 (15) 0.0525 (13) 0.0579 (13) −0.0086 (11) 0.0486 (13) −0.0030 (10)
C5 0.0488 (13) 0.0467 (12) 0.0504 (12) −0.0060 (10) 0.0371 (11) −0.0010 (9)
C6 0.0466 (12) 0.0445 (11) 0.0462 (11) −0.0090 (9) 0.0350 (10) −0.0035 (9)
C7 0.0480 (13) 0.0474 (12) 0.0449 (11) −0.0027 (9) 0.0342 (10) −0.0013 (9)
C8 0.0459 (12) 0.0464 (11) 0.0419 (10) −0.0002 (9) 0.0325 (10) −0.0002 (9)
C9 0.0515 (13) 0.0463 (12) 0.0438 (11) 0.0006 (10) 0.0355 (11) −0.0005 (9)
C10 0.0484 (12) 0.0411 (10) 0.0425 (10) 0.0012 (9) 0.0344 (10) −0.0005 (8)
C11 0.0719 (16) 0.0474 (12) 0.0601 (13) 0.0108 (11) 0.0551 (13) 0.0074 (10)
N12 0.0748 (13) 0.0409 (9) 0.0746 (12) 0.0072 (9) 0.0647 (12) 0.0057 (9)
C13 0.0651 (15) 0.0558 (13) 0.0671 (14) 0.0107 (11) 0.0551 (13) 0.0123 (11)
C14 0.0479 (12) 0.0405 (11) 0.0455 (11) −0.0005 (9) 0.0336 (10) −0.0002 (8)
C15 0.0440 (12) 0.0374 (10) 0.0497 (11) −0.0017 (9) 0.0352 (10) −0.0052 (9)
C16 0.0528 (14) 0.0399 (11) 0.0594 (13) 0.0044 (10) 0.0413 (12) 0.0018 (9)
C17 0.0520 (14) 0.0522 (13) 0.0685 (15) −0.0018 (11) 0.0474 (13) −0.0081 (11)
C18 0.0591 (15) 0.0528 (12) 0.0588 (13) −0.0081 (11) 0.0480 (12) −0.0135 (11)
C19 0.0584 (15) 0.0586 (14) 0.0477 (12) 0.0013 (11) 0.0407 (12) −0.0025 (10)
C20 0.0441 (12) 0.0536 (12) 0.0473 (11) 0.0023 (10) 0.0340 (10) −0.0051 (9)
C21 0.0583 (14) 0.0524 (13) 0.0517 (12) 0.0147 (11) 0.0427 (12) 0.0103 (10)
C22 0.088 (2) 0.0556 (14) 0.0835 (18) −0.0039 (14) 0.0704 (17) −0.0055 (13)
C23 0.083 (2) 0.086 (2) 0.083 (2) −0.0061 (18) 0.058 (2) 0.0030 (18)

Geometric parameters (Å, °)

Cl1—C5 1.743 (2) C11—N12 1.451 (3)
Cl2—C3 1.735 (3) C11—H11A 0.9700
Cl3—C18 1.730 (2) C11—H11B 0.9700
Cl4—C16 1.736 (2) N12—C21 1.360 (3)
O1—C21 1.226 (3) N12—C13 1.449 (3)
O1W—H1W1 1.0501 C13—H13A 0.9700
O2—C9 1.226 (2) C13—H13B 0.9700
C1—C2 1.373 (3) C14—C15 1.461 (3)
C1—C6 1.397 (3) C14—H14A 0.9300
C1—H1A 0.9300 C15—C20 1.400 (3)
C2—C3 1.380 (3) C15—C16 1.401 (3)
C2—H2A 0.9300 C16—C17 1.385 (3)
C3—C4 1.373 (3) C17—C18 1.378 (3)
C4—C5 1.376 (3) C17—H17A 0.9300
C4—H4A 0.9300 C18—C19 1.380 (3)
C5—C6 1.403 (3) C19—C20 1.370 (3)
C6—C7 1.466 (3) C19—H19A 0.9300
C7—C8 1.337 (3) C20—H20A 0.9300
C7—H7A 0.9300 C21—C22 1.477 (4)
C8—C9 1.494 (3) C22—C23 1.273 (4)
C8—C13 1.516 (3) C22—H22A 0.9300
C9—C10 1.494 (3) C23—H23A 1.01 (3)
C10—C14 1.336 (3) C23—H23B 0.90 (3)
C10—C11 1.510 (3)
C2—C1—C6 122.4 (2) C13—N12—C11 112.94 (19)
C2—C1—H1A 118.8 N12—C13—C8 110.76 (19)
C6—C1—H1A 118.8 N12—C13—H13A 109.5
C1—C2—C3 119.2 (2) C8—C13—H13A 109.5
C1—C2—H2A 120.4 N12—C13—H13B 109.5
C3—C2—H2A 120.4 C8—C13—H13B 109.5
C4—C3—C2 121.3 (2) H13A—C13—H13B 108.1
C4—C3—Cl2 118.93 (19) C10—C14—C15 129.64 (19)
C2—C3—Cl2 119.8 (2) C10—C14—H14A 115.2
C3—C4—C5 118.2 (2) C15—C14—H14A 115.2
C3—C4—H4A 120.9 C20—C15—C16 115.8 (2)
C5—C4—H4A 120.9 C20—C15—C14 123.2 (2)
C4—C5—C6 123.3 (2) C16—C15—C14 120.84 (19)
C4—C5—Cl1 117.01 (17) C17—C16—C15 122.5 (2)
C6—C5—Cl1 119.65 (17) C17—C16—Cl4 117.38 (18)
C1—C6—C5 115.5 (2) C15—C16—Cl4 120.08 (17)
C1—C6—C7 123.27 (19) C18—C17—C16 118.8 (2)
C5—C6—C7 121.13 (19) C18—C17—H17A 120.6
C8—C7—C6 129.2 (2) C16—C17—H17A 120.6
C8—C7—H7A 115.4 C17—C18—C19 120.7 (2)
C6—C7—H7A 115.4 C17—C18—Cl3 119.11 (19)
C7—C8—C9 117.79 (19) C19—C18—Cl3 120.14 (18)
C7—C8—C13 124.7 (2) C20—C19—C18 119.4 (2)
C9—C8—C13 117.56 (18) C20—C19—H19A 120.3
O2—C9—C8 120.56 (19) C18—C19—H19A 120.3
O2—C9—C10 120.8 (2) C19—C20—C15 122.6 (2)
C8—C9—C10 118.57 (18) C19—C20—H20A 118.7
C14—C10—C9 117.60 (18) C15—C20—H20A 118.7
C14—C10—C11 124.36 (19) O1—C21—N12 120.6 (2)
C9—C10—C11 118.04 (19) O1—C21—C22 121.0 (2)
N12—C11—C10 109.96 (17) N12—C21—C22 118.4 (2)
N12—C11—H11A 109.7 C23—C22—C21 123.1 (3)
C10—C11—H11A 109.7 C23—C22—H22A 118.4
N12—C11—H11B 109.7 C21—C22—H22A 118.4
C10—C11—H11B 109.7 C22—C23—H23A 127.5 (18)
H11A—C11—H11B 108.2 C22—C23—H23B 117 (2)
C21—N12—C13 120.28 (19) H23A—C23—H23B 116 (3)
C21—N12—C11 126.8 (2)
C6—C1—C2—C3 0.5 (4) C10—C11—N12—C13 62.9 (2)
C1—C2—C3—C4 0.9 (4) C21—N12—C13—C8 118.9 (2)
C1—C2—C3—Cl2 179.49 (18) C11—N12—C13—C8 −61.9 (2)
C2—C3—C4—C5 −1.2 (3) C7—C8—C13—N12 −153.1 (2)
Cl2—C3—C4—C5 −179.73 (17) C9—C8—C13—N12 26.5 (3)
C3—C4—C5—C6 0.0 (3) C9—C10—C14—C15 −174.22 (19)
C3—C4—C5—Cl1 177.85 (17) C11—C10—C14—C15 6.4 (4)
C2—C1—C6—C5 −1.5 (3) C10—C14—C15—C20 29.1 (3)
C2—C1—C6—C7 −178.5 (2) C10—C14—C15—C16 −155.2 (2)
C4—C5—C6—C1 1.3 (3) C20—C15—C16—C17 −0.9 (3)
Cl1—C5—C6—C1 −176.51 (16) C14—C15—C16—C17 −176.90 (19)
C4—C5—C6—C7 178.3 (2) C20—C15—C16—Cl4 179.54 (15)
Cl1—C5—C6—C7 0.5 (3) C14—C15—C16—Cl4 3.6 (3)
C1—C6—C7—C8 −29.5 (3) C15—C16—C17—C18 0.3 (3)
C5—C6—C7—C8 153.7 (2) Cl4—C16—C17—C18 179.86 (16)
C6—C7—C8—C9 178.76 (19) C16—C17—C18—C19 0.4 (3)
C6—C7—C8—C13 −1.6 (4) C16—C17—C18—Cl3 −179.14 (16)
C7—C8—C9—O2 1.8 (3) C17—C18—C19—C20 −0.5 (3)
C13—C8—C9—O2 −177.8 (2) Cl3—C18—C19—C20 179.05 (17)
C7—C8—C9—C10 −176.47 (19) C18—C19—C20—C15 −0.2 (3)
C13—C8—C9—C10 3.9 (3) C16—C15—C20—C19 0.9 (3)
O2—C9—C10—C14 −0.3 (3) C14—C15—C20—C19 176.7 (2)
C8—C9—C10—C14 178.02 (19) C13—N12—C21—O1 −3.3 (3)
O2—C9—C10—C11 179.2 (2) C11—N12—C21—O1 177.6 (2)
C8—C9—C10—C11 −2.5 (3) C13—N12—C21—C22 176.3 (2)
C14—C10—C11—N12 150.5 (2) C11—N12—C21—C22 −2.8 (3)
C9—C10—C11—N12 −28.9 (3) O1—C21—C22—C23 −22.3 (4)
C10—C11—N12—C21 −117.9 (2) N12—C21—C22—C23 158.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O2i 1.05 2.19 3.180 (3) 157
C4—H4A···O1ii 0.93 2.29 3.186 (3) 162

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5130).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dimmock, J. R., Padamanilayam, M. P. & Pathucode, R. N. (2000). J. Med. Chem. 44, 586–593.
  4. El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921. [DOI] [PubMed]
  5. Favier, L. S., Maria, A. O. M., Wendel, G. H., Borkowski, E. J., Giordano, O. S., Pelzer, L. & Tonn, C. E. (2005). J. Ethnopharmacol. 100, 260–267. [DOI] [PubMed]
  6. Husain, A., Hasan, S. M., Lal, S. & Alam, M. M. (2006). Indian J. Pharm. Sci. 68, 536–538.
  7. Oh, S., Jeong, I. H., Shin, W. S. & Wang, Q. L. (2006). Bioorg. Med. Chem. Lett. 16, 1656–1659. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016023/sj5130sup1.cif

e-67-o1301-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016023/sj5130Isup2.hkl

e-67-o1301-Isup2.hkl (291.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016023/sj5130Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES