Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):o1467. doi: 10.1107/S1600536811018800

4-(2-Cyano­ethyl­sulfan­yl)-5′-(pyridin-4-yl)tetra­thia­fulvalene

Haiyun Li a,b, Guannan Wang a,b, Xunwen Xiao a,*
PMCID: PMC3120500  PMID: 21754838

Abstract

In the title compound, C14H10N2S5 [systematic name; 3-({2-[4-(pyridin-4-yl)-2H-1,3-dithiol-2-yl­idene]-2H-1,3-dithiol-4-yl}sul­fan­yl)propane­nitrile], all of the non-H atoms except for the cyano­ethyl­sulfanyl group, are approximately coplanar [maxium deviation = 0.090 (3) Å]. The two five-membered 1,3-dithiole rings are twisted by 2.6 (2)°. Weak inter­molecular S⋯S inter­actions occur [3.586 (4) and 3.530 (4) Å].

Related literature

For background to the chemistry of prridine-based tetra­thia­fulvalenes, see: Fabre (2004); Zhu et al. (2007). For the preparation of the title compound, see: Jia et al. (2001); Zhu et al. (2010). For related structures, see: Han et al. (2007); Zhao et al. (2008).graphic file with name e-67-o1467-scheme1.jpg

Experimental

Crystal data

  • C14H10N2S5

  • M r = 366.54

  • Monoclinic, Inline graphic

  • a = 14.6231 (18) Å

  • b = 10.7197 (12) Å

  • c = 9.9211 (12) Å

  • β = 94.775 (4)°

  • V = 1549.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 223 K

  • 0.50 × 0.20 × 0.20 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.613, T max = 0.856

  • 7658 measured reflections

  • 2869 independent reflections

  • 2268 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.126

  • S = 1.11

  • 2869 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018800/ng5167sup1.cif

e-67-o1467-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018800/ng5167Isup2.hkl

e-67-o1467-Isup2.hkl (140.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018800/ng5167Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NNS (20902051), the Education Committee of Zhejiang Province (Z200906833), Ningbo Natural Science (2010 A610186) and the Ministry of Education Scientific Research Foundation for Returned Overseas Scholars.

supplementary crystallographic information

Comment

Tetrathiafulvalene (TTF) and its derivatives are strong electron donors (D). Many electron acceptors (A) have been connected to TTF to afford electron D—A system to build molecular level devices, such as molecular rectifiers and molecular switches. In order to obtain materials in molecular electronics, currently, our research is focus on the synthesis and crystal structures of TTF derivatives. In the title compound, the substituent group of the TTF core are located in opposite direction, resulting in chair-like molecular comformations. All bonds lengths and bond angles are found to within the range for neutral TTF (Han et al. 2007). In addition, the pyridyl group and tetrathiafulvalene motif are coplanar, the non-H atoms of the two group lie on a plan [maxium deviation is 0.0908 (33)?Å] (Fig.1). Inter-molecular interaction involving S(2)···S(1) 3.586 (4) Å and S(2)···S(3) 3.530 (4) Å are present consolidating the crystal packing. (Fig.2).

Experimental

The title compound was prepared according to the literature (Jia et al.,2001) (Zhu et al.,2007). Red crystals were obtained from slow evaporation of a dichloromethane solution at room temperature.

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound.Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing diagram view along the crystallographic b-axis.

Crystal data

C14H10N2S5 F(000) = 752
Mr = 366.54 Dx = 1.571 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 5787 reflections
a = 14.6231 (18) Å θ = 3.1–27.5°
b = 10.7197 (12) Å µ = 0.74 mm1
c = 9.9211 (12) Å T = 223 K
β = 94.775 (4)° Block, red
V = 1549.8 (3) Å3 0.50 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku Saturn diffractometer 2869 independent reflections
Radiation source: fine-focus sealed tube 2268 reflections with I > 2σ(I)
graphite Rint = 0.043
Detector resolution: 14.63 pixels mm-1 θmax = 25.5°, θmin = 3.1°
ω scans h = −17→16
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −12→12
Tmin = 0.613, Tmax = 0.856 l = −12→9
7658 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.3388P] where P = (Fo2 + 2Fc2)/3
2869 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.45140 (7) 0.17432 (9) 0.11234 (11) 0.0324 (3)
S2 0.57042 (7) −0.02950 (10) 0.22543 (11) 0.0362 (3)
S3 0.61033 (7) 0.25532 (10) −0.08148 (12) 0.0377 (3)
S4 0.72869 (7) 0.05022 (10) 0.03146 (11) 0.0361 (3)
S5 0.87437 (8) 0.10167 (11) −0.16139 (12) 0.0438 (3)
N1 0.1558 (3) 0.1902 (4) 0.3981 (5) 0.0555 (11)
N2 0.9396 (3) 0.4512 (4) −0.1998 (5) 0.0619 (12)
C1 0.1881 (3) 0.2455 (5) 0.2923 (6) 0.0601 (14)
H1 0.1532 0.3107 0.2508 0.072*
C2 0.2690 (3) 0.2145 (4) 0.2386 (5) 0.0459 (12)
H2 0.2865 0.2562 0.1615 0.055*
C3 0.3240 (3) 0.1224 (4) 0.2984 (4) 0.0323 (9)
C4 0.2907 (3) 0.0618 (4) 0.4090 (5) 0.0451 (12)
H4 0.3242 −0.0035 0.4528 0.054*
C5 0.2082 (3) 0.0989 (5) 0.4532 (5) 0.0529 (14)
H5 0.1873 0.0568 0.5278 0.063*
C6 0.4131 (3) 0.0883 (4) 0.2484 (4) 0.0321 (9)
C7 0.4680 (3) −0.0036 (4) 0.2963 (4) 0.0345 (10)
H7 0.4512 −0.0538 0.3680 0.041*
C8 0.5581 (2) 0.0973 (3) 0.1123 (4) 0.0284 (9)
C9 0.6232 (3) 0.1293 (4) 0.0326 (4) 0.0298 (9)
C10 0.7170 (3) 0.2350 (4) −0.1449 (4) 0.0348 (10)
H10 0.7363 0.2886 −0.2120 0.042*
C11 0.7705 (3) 0.1427 (4) −0.0967 (4) 0.0350 (10)
C12 0.9586 (3) 0.1601 (5) −0.0324 (5) 0.0484 (12)
H12A 0.9549 0.1103 0.0498 0.058*
H12B 1.0199 0.1478 −0.0632 0.058*
C13 0.9480 (3) 0.2965 (5) 0.0034 (5) 0.0511 (13)
H13A 0.8915 0.3064 0.0491 0.061*
H13B 0.9995 0.3207 0.0676 0.061*
C14 0.9445 (3) 0.3823 (5) −0.1136 (5) 0.0458 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0303 (5) 0.0311 (5) 0.0363 (6) 0.0025 (4) 0.0064 (4) 0.0022 (4)
S2 0.0359 (6) 0.0343 (6) 0.0396 (7) 0.0060 (5) 0.0090 (5) 0.0060 (5)
S3 0.0350 (6) 0.0345 (6) 0.0439 (7) 0.0004 (5) 0.0048 (5) 0.0076 (5)
S4 0.0306 (5) 0.0372 (6) 0.0413 (7) 0.0026 (5) 0.0079 (5) 0.0050 (5)
S5 0.0359 (6) 0.0507 (7) 0.0469 (8) −0.0030 (5) 0.0165 (5) −0.0037 (6)
N1 0.036 (2) 0.063 (3) 0.070 (3) −0.005 (2) 0.020 (2) −0.014 (2)
N2 0.069 (3) 0.056 (3) 0.062 (3) 0.004 (2) 0.014 (2) 0.003 (2)
C1 0.036 (3) 0.066 (3) 0.080 (4) 0.007 (2) 0.011 (3) 0.004 (3)
C2 0.037 (2) 0.051 (3) 0.051 (3) 0.003 (2) 0.010 (2) 0.010 (2)
C3 0.027 (2) 0.032 (2) 0.037 (3) −0.0060 (17) 0.0039 (18) −0.0083 (18)
C4 0.044 (3) 0.042 (3) 0.051 (3) 0.000 (2) 0.017 (2) 0.002 (2)
C5 0.047 (3) 0.056 (3) 0.060 (3) −0.013 (3) 0.025 (3) −0.007 (3)
C6 0.031 (2) 0.030 (2) 0.036 (2) −0.0051 (18) 0.0087 (18) −0.0032 (18)
C7 0.037 (2) 0.038 (2) 0.030 (2) −0.0037 (19) 0.0103 (18) 0.0014 (19)
C8 0.0252 (19) 0.027 (2) 0.033 (2) −0.0019 (16) −0.0001 (17) −0.0029 (17)
C9 0.030 (2) 0.030 (2) 0.030 (2) −0.0032 (17) 0.0018 (17) −0.0028 (17)
C10 0.036 (2) 0.039 (2) 0.030 (2) −0.0086 (19) 0.0072 (19) 0.0033 (19)
C11 0.031 (2) 0.039 (2) 0.036 (3) −0.0080 (19) 0.0085 (19) 0.000 (2)
C12 0.031 (2) 0.063 (3) 0.052 (3) 0.000 (2) 0.009 (2) 0.007 (3)
C13 0.041 (3) 0.069 (3) 0.043 (3) −0.010 (2) 0.007 (2) −0.007 (3)
C14 0.039 (3) 0.050 (3) 0.049 (3) −0.003 (2) 0.010 (2) −0.013 (3)

Geometric parameters (Å, °)

S1—C6 1.764 (4) C3—C4 1.398 (6)
S1—C8 1.765 (4) C3—C6 1.478 (5)
S2—C7 1.729 (4) C4—C5 1.376 (6)
S2—C8 1.762 (4) C4—H4 0.9400
S3—C10 1.744 (4) C5—H5 0.9400
S3—C9 1.762 (4) C6—C7 1.333 (6)
S4—C9 1.761 (4) C7—H7 0.9400
S4—C11 1.761 (4) C8—C9 1.333 (5)
S5—C11 1.753 (4) C10—C11 1.326 (6)
S5—C12 1.812 (5) C10—H10 0.9400
N1—C1 1.327 (7) C12—C13 1.515 (6)
N1—C5 1.331 (7) C12—H12A 0.9800
N2—C14 1.128 (6) C12—H12B 0.9800
C1—C2 1.377 (6) C13—C14 1.479 (7)
C1—H1 0.9400 C13—H13A 0.9800
C2—C3 1.377 (6) C13—H13B 0.9800
C2—H2 0.9400
C6—S1—C8 95.29 (18) S2—C7—H7 120.3
C7—S2—C8 95.10 (19) C9—C8—S2 122.4 (3)
C10—S3—C9 94.88 (19) C9—C8—S1 123.7 (3)
C9—S4—C11 95.20 (19) S2—C8—S1 113.8 (2)
C11—S5—C12 102.3 (2) C8—C9—S4 123.3 (3)
C1—N1—C5 115.0 (4) C8—C9—S3 122.3 (3)
N1—C1—C2 124.8 (5) S4—C9—S3 114.3 (2)
N1—C1—H1 117.6 C11—C10—S3 118.8 (3)
C2—C1—H1 117.6 C11—C10—H10 120.6
C3—C2—C1 119.8 (4) S3—C10—H10 120.6
C3—C2—H2 120.1 C10—C11—S5 123.9 (3)
C1—C2—H2 120.1 C10—C11—S4 116.8 (3)
C2—C3—C4 116.2 (4) S5—C11—S4 119.1 (2)
C2—C3—C6 122.2 (4) C13—C12—S5 115.0 (3)
C4—C3—C6 121.6 (4) C13—C12—H12A 108.5
C5—C4—C3 119.2 (4) S5—C12—H12A 108.5
C5—C4—H4 120.4 C13—C12—H12B 108.5
C3—C4—H4 120.4 S5—C12—H12B 108.5
N1—C5—C4 124.9 (5) H12A—C12—H12B 107.5
N1—C5—H5 117.6 C14—C13—C12 114.5 (4)
C4—C5—H5 117.6 C14—C13—H13A 108.6
C7—C6—C3 125.8 (4) C12—C13—H13A 108.6
C7—C6—S1 116.0 (3) C14—C13—H13B 108.6
C3—C6—S1 118.2 (3) C12—C13—H13B 108.6
C6—C7—S2 119.3 (3) H13A—C13—H13B 107.6
C6—C7—H7 120.3 N2—C14—C13 177.0 (5)
C5—N1—C1—C2 0.3 (8) C6—S1—C8—S2 6.1 (2)
N1—C1—C2—C3 −2.1 (8) S2—C8—C9—S4 −0.5 (5)
C1—C2—C3—C4 2.7 (7) S1—C8—C9—S4 −178.9 (2)
C1—C2—C3—C6 −177.7 (4) S2—C8—C9—S3 179.4 (2)
C2—C3—C4—C5 −1.7 (6) S1—C8—C9—S3 1.0 (5)
C6—C3—C4—C5 178.7 (4) C11—S4—C9—C8 178.6 (4)
C1—N1—C5—C4 0.7 (8) C11—S4—C9—S3 −1.4 (3)
C3—C4—C5—N1 0.0 (8) C10—S3—C9—C8 −179.1 (4)
C2—C3—C6—C7 −176.5 (4) C10—S3—C9—S4 0.8 (3)
C4—C3—C6—C7 3.1 (7) C9—S3—C10—C11 0.3 (4)
C2—C3—C6—S1 2.9 (6) S3—C10—C11—S5 173.8 (2)
C4—C3—C6—S1 −177.5 (3) S3—C10—C11—S4 −1.4 (5)
C8—S1—C6—C7 −4.2 (4) C12—S5—C11—C10 106.0 (4)
C8—S1—C6—C3 176.3 (3) C12—S5—C11—S4 −79.0 (3)
C3—C6—C7—S2 −179.7 (3) C9—S4—C11—C10 1.6 (4)
S1—C6—C7—S2 0.9 (5) C9—S4—C11—S5 −173.7 (3)
C8—S2—C7—C6 3.0 (4) C11—S5—C12—C13 −53.5 (4)
C7—S2—C8—C9 175.7 (4) S5—C12—C13—C14 −53.5 (5)
C7—S2—C8—S1 −5.7 (3) C12—C13—C14—N2 152 (11)
C6—S1—C8—C9 −175.4 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5167).

References

  1. Fabre, J. M. (2004). Chem. Rev. 104, 5133–5150. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Han, Y. F., Zhang, J. S., Lin, Y. J., Dai, J. & Jin, G. X. (2007). J. Organomet. Chem. 692, 4545–4550.
  4. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  5. Jia, C. Y., Zhang, D. Q., Xu, W. & Zhu, D. B. (2001). Org. Chem, 3, 1941–1944. [DOI] [PubMed]
  6. Rigaku (2005). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhao, B.-T., Ding, J.-J. & Qu, G.-R. (2008). Acta Cryst. E64, o2078. [DOI] [PMC free article] [PubMed]
  9. Zhu, Q. Y., Liu, Y., Lu, Z. J., Wang, J. P., Huo, L. B., Qin, Y. R. & Dai, J. (2010). Synth. Met. 160, 713–717.
  10. Zhu, Q. Y., Liu, Y., Lu, W., Zhang, Y., Bian, G. Q., Niu, G. Y. & Dai, J. (2007). Inorg. Chem. 46, 10065–10070. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018800/ng5167sup1.cif

e-67-o1467-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018800/ng5167Isup2.hkl

e-67-o1467-Isup2.hkl (140.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018800/ng5167Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES