Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 28;67(Pt 6):m804. doi: 10.1107/S1600536811019519

Diaqua­(5-carb­oxy­benzene-1,3-di­carboxyl­ato-κO 1)(4,4′-dimethyl-2,2′-bipyridine-κ2 N,N′)zinc

Chong-Zhen Mei a, Kai-Hui Li a, Wen-Wen Shan a,*
PMCID: PMC3120513  PMID: 21754680

Abstract

In the title compound, [Zn(C9H4O6)(C12H12N2)(H2O)2], the ZnII atom is five-coordinated by two N atoms from a 4,4′-dimethyl-2,2′-bipyridine ligand, one O atom from a 5-carb­oxy­benzene-1,3-dicarboxyl­ate ligand and two water mol­ecules in a distorted trigonal–bipyramidal geometry. The complex mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds and partly overlapping π–π inter­actions [centroid–centroid distance = 4.017 (2) Å] into a three-dimensional supra­molecular network.

Related literature

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2006). For O—H⋯O hydrogen bonds, see: Desiraju et al. (2004). For π–π inter­actions, see: Zang et al. (2010).graphic file with name e-67-0m804-scheme1.jpg

Experimental

Crystal data

  • [Zn(C9H4O6)(C12H12N2)(H2O)2]

  • M r = 493.76

  • Triclinic, Inline graphic

  • a = 9.1938 (9) Å

  • b = 10.7978 (8) Å

  • c = 11.5842 (7) Å

  • α = 85.238 (6)°

  • β = 72.960 (7)°

  • γ = 69.760 (8)°

  • V = 1031.40 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.780, T max = 0.798

  • 7701 measured reflections

  • 3607 independent reflections

  • 3246 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.089

  • S = 1.05

  • 3607 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811019519/hy2433sup1.cif

e-67-0m804-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019519/hy2433Isup2.hkl

e-67-0m804-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.82 1.79 2.603 (2) 171
O1W—H1WA⋯O1ii 0.84 1.81 2.635 (2) 165
O1W—H1WB⋯O2iii 0.84 1.75 2.593 (2) 171
O2W—H2WA⋯O2iv 0.85 1.86 2.688 (2) 166
O2W—H2WB⋯O4v 0.84 1.79 2.633 (2) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported financially by the Natural Science Foundation of Henan Province (No. 2010 A140009) and the Inter­national Technology Cooperation Project of Science and Technology Department of Henan Province of China (No. 104300510044).

supplementary crystallographic information

Comment

Supramolecular coordination assemblies have received much attention not only for their variety of architectures but also for the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). A great number of multidentate organic ligands such as organic aromatic polycarboxylate ligands and N-donor building blocks have been successfully employed in the generation of many interesting systems (Zang et al., 2006). To further explore the influence of multicarboxylate and N-donor ligands on the properties and construction of coordination compounds, we undertake the synthetic and structural studies on a Zn(II) complex based on benzene-1,3,5-tricarboxylic acid (H3btc) and 4,4'-dimethyl-2,2'-bipyridine (dmbpy), Zn(Hbtc)(bmbpy)(H2O)2.

As shown in Fig. 1, the asymmetric unit consists of one ZnII atom, one Hbtc ligand, one dmbpy ligand and two coordinated water molecules. The Hbtc ligand occurs in a form with an intact COOH group. The metal ion is coordinated by one O atom from the Hbtc ligand, two O atoms of water molecules and two N atoms from the chelating dmbpy ligand, completing a distorted trigonal bipyramidal geometry. N1, O1W and O2W comprise the equatorial plane, while O3 and N2 occupy the axial positions. A pair of symmetry-related complex molecules are associated together through O1W—H1WA···O1i hydrogen bonds (Table 1) [symmetry code: (i) 1-x, 1-y, 1-z], forming a dimeric unit, in which π–π stacking interaction occurs with a centroid–centroid distance of 4.017 (2)Å between two face-to-face aromatic rings (phenyl ring and pyridine ring bearing the N1 atom). Adjacent dimeric units are connected by O2W—H2WA···O2ii hydrogen bonds [symmetry code: (ii) -x, 1-y, 1-z], resulting in a one-dimensional supramolecular chain running along the a-axis (Fig. 2). As depicted in Fig. 3, the chains are extended to a two-dimensional supramolecular structure through O1W—H1WB···O2iii and O2W—H2WB···O4iv hydrogen bonds [symmetry codes: (iii) x, 1+y, z; (iv) -x, 2-y, 1-z]. The hydroxyl group and the uncoordinated O atom of the intact COOH group serve as donor and accepter, respectively. Neighboring such carboxylic groups are linked together through O5—H5A···O6v hydrogen bonds [symmetry code: (v) -1-x, 1-y, 2-z]. Thus, the layers are interconnected into a three-dimensional supramolecular structure (Fig. 4).

Experimental

The title compound was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of benzene-1,3,5-tricarboxylic acid (0.011 g, 0.05 mmol), 4,4'-dimethyl-2,2'-bipyridine (0.009 g, 0.05 mmol), Zn(NO3)2.6H2O (0.015 g, 0.05 mmol) and NaOH (0.004 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 d, and then cooled to room temperature. Colorless block crystals of the title compound were obtained in 68% yield based on zinc.

Refinement

H atoms on C atoms and hydroxyl O atom were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,O). Water H atoms were obtained from a difference Fourier map and restrained to ideal configuration of the water molecules and fixed in the final stages of refinement, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Irrespective H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

A view of the supramolecular chain in the title compound. Dashed lines represent hydrogen bonds and π–π interactions. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 1+x, y, z.]

Fig. 3.

Fig. 3.

A view of the two-dimensional supramolecular structure in the title compound. Dashed lines represent hydrogen bonds. [Symmetry codes: (iii) x, 1+y, z; (iv) -x, 2-y, 1-z.]

Fig. 4.

Fig. 4.

The three-dimensional supramolecular structure connected by interlayer hydrogen bonds (dashed lines).

Crystal data

[Zn(C9H4O6)(C12H12N2)(H2O)2] Z = 2
Mr = 493.76 F(000) = 508
Triclinic, P1 Dx = 1.590 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1938 (9) Å Cell parameters from 4795 reflections
b = 10.7978 (8) Å θ = 3.5–29.1°
c = 11.5842 (7) Å µ = 1.24 mm1
α = 85.238 (6)° T = 296 K
β = 72.960 (7)° Block, colorless
γ = 69.760 (8)° 0.21 × 0.20 × 0.19 mm
V = 1031.40 (16) Å3

Data collection

Bruker APEXII CCD diffractometer 3607 independent reflections
Radiation source: fine-focus sealed tube 3246 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.780, Tmax = 0.798 k = −12→12
7701 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0516P)2] where P = (Fo2 + 2Fc2)/3
3607 reflections (Δ/σ)max = 0.009
292 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.28 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.29959 (3) 0.80971 (2) 0.41463 (2) 0.02705 (12)
O1 0.3344 (2) 0.21247 (17) 0.51057 (18) 0.0451 (5)
O2 0.1654 (2) 0.11417 (16) 0.62226 (18) 0.0417 (5)
O3 0.1815 (2) 0.68960 (16) 0.50550 (15) 0.0353 (4)
O4 −0.0341 (2) 0.81358 (16) 0.64551 (17) 0.0442 (5)
O5 −0.4023 (2) 0.60517 (15) 0.91517 (15) 0.0378 (4)
H5A −0.4810 0.5991 0.9684 0.057*
O6 −0.3417 (2) 0.38720 (15) 0.90916 (15) 0.0377 (4)
O1W 0.34722 (19) 0.87467 (15) 0.55069 (14) 0.0310 (4)
H1WA 0.4474 0.8605 0.5349 0.046*
H1WB 0.2920 0.9551 0.5668 0.046*
O2W 0.1124 (2) 0.92769 (15) 0.35858 (16) 0.0380 (4)
H2WA 0.0254 0.9106 0.3765 0.057*
H2WB 0.0912 1.0101 0.3581 0.057*
N1 0.4831 (2) 0.64334 (18) 0.31684 (17) 0.0294 (4)
N2 0.4584 (2) 0.89292 (18) 0.27789 (18) 0.0313 (5)
C1 0.2061 (3) 0.2140 (2) 0.5853 (2) 0.0295 (5)
C2 0.0560 (3) 0.7072 (2) 0.5941 (2) 0.0277 (5)
C3 −0.3103 (3) 0.4905 (2) 0.8723 (2) 0.0257 (5)
C4 0.0878 (3) 0.3468 (2) 0.6388 (2) 0.0244 (5)
C5 −0.0533 (3) 0.3572 (2) 0.7292 (2) 0.0261 (5)
H5 −0.0770 0.2816 0.7590 0.031*
C6 −0.1601 (3) 0.4811 (2) 0.7756 (2) 0.0254 (5)
C7 −0.1244 (3) 0.5936 (2) 0.73168 (19) 0.0246 (5)
H7 −0.1955 0.6759 0.7635 0.030*
C8 0.0167 (3) 0.5847 (2) 0.6404 (2) 0.0241 (5)
C9 0.1210 (3) 0.4604 (2) 0.5950 (2) 0.0256 (5)
H9 0.2154 0.4532 0.5337 0.031*
C10 0.4961 (3) 0.5176 (2) 0.3444 (2) 0.0352 (6)
H10 0.4184 0.5014 0.4101 0.042*
C11 0.6183 (3) 0.4113 (2) 0.2805 (2) 0.0378 (6)
H11 0.6214 0.3259 0.3027 0.045*
C12 0.7357 (3) 0.4315 (2) 0.1840 (2) 0.0341 (6)
C13 0.8735 (4) 0.3183 (3) 0.1126 (3) 0.0495 (7)
H13A 0.9377 0.2685 0.1638 0.074*
H13B 0.9394 0.3519 0.0463 0.074*
H13C 0.8313 0.2621 0.0821 0.074*
C14 0.7234 (3) 0.5617 (2) 0.1547 (2) 0.0319 (6)
H14 0.8002 0.5794 0.0894 0.038*
C15 0.5972 (3) 0.6652 (2) 0.2222 (2) 0.0269 (5)
C16 0.5789 (3) 0.8062 (2) 0.1965 (2) 0.0278 (5)
C17 0.6761 (3) 0.8476 (2) 0.0971 (2) 0.0374 (6)
H17 0.7560 0.7855 0.0409 0.045*
C18 0.6557 (3) 0.9805 (2) 0.0801 (2) 0.0384 (6)
C19 0.7596 (4) 1.0268 (3) −0.0278 (3) 0.0604 (9)
H19A 0.8531 1.0303 −0.0091 0.091*
H19B 0.6990 1.1132 −0.0489 0.091*
H19C 0.7930 0.9666 −0.0946 0.091*
C20 0.5346 (3) 1.0673 (3) 0.1677 (3) 0.0436 (7)
H20 0.5178 1.1574 0.1616 0.052*
C21 0.4393 (3) 1.0211 (2) 0.2634 (2) 0.0398 (6)
H21 0.3581 1.0815 0.3204 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02375 (18) 0.02181 (17) 0.03013 (18) −0.00935 (12) 0.00191 (12) 0.00227 (11)
O1 0.0236 (10) 0.0374 (10) 0.0601 (12) −0.0075 (8) 0.0085 (9) −0.0093 (9)
O2 0.0267 (9) 0.0214 (8) 0.0687 (13) −0.0072 (7) −0.0004 (9) −0.0071 (8)
O3 0.0319 (10) 0.0301 (9) 0.0400 (10) −0.0185 (7) 0.0036 (8) 0.0062 (7)
O4 0.0418 (11) 0.0204 (8) 0.0559 (12) −0.0106 (8) 0.0066 (9) 0.0036 (8)
O5 0.0326 (10) 0.0273 (9) 0.0371 (10) −0.0088 (8) 0.0132 (8) −0.0019 (7)
O6 0.0350 (10) 0.0280 (9) 0.0419 (10) −0.0160 (8) 0.0064 (8) 0.0056 (8)
O1W 0.0220 (9) 0.0236 (8) 0.0419 (10) −0.0063 (7) −0.0016 (8) −0.0038 (7)
O2W 0.0299 (10) 0.0224 (8) 0.0614 (12) −0.0118 (7) −0.0109 (9) 0.0087 (8)
N1 0.0298 (11) 0.0249 (10) 0.0308 (10) −0.0114 (8) −0.0025 (9) 0.0018 (8)
N2 0.0269 (11) 0.0269 (10) 0.0334 (11) −0.0088 (9) 0.0008 (9) 0.0014 (9)
C1 0.0227 (13) 0.0257 (12) 0.0387 (14) −0.0066 (10) −0.0073 (11) −0.0044 (10)
C2 0.0272 (13) 0.0243 (12) 0.0321 (13) −0.0128 (10) −0.0062 (11) 0.0086 (10)
C3 0.0262 (12) 0.0240 (12) 0.0236 (11) −0.0099 (10) −0.0011 (10) 0.0021 (9)
C4 0.0211 (12) 0.0230 (11) 0.0294 (12) −0.0099 (9) −0.0048 (10) 0.0009 (9)
C5 0.0281 (13) 0.0202 (11) 0.0304 (12) −0.0121 (10) −0.0052 (10) 0.0046 (9)
C6 0.0237 (12) 0.0256 (11) 0.0258 (11) −0.0107 (10) −0.0033 (10) 0.0029 (9)
C7 0.0232 (12) 0.0196 (11) 0.0270 (12) −0.0075 (9) −0.0008 (10) 0.0003 (9)
C8 0.0220 (12) 0.0240 (11) 0.0256 (11) −0.0099 (9) −0.0040 (10) 0.0037 (9)
C9 0.0198 (12) 0.0273 (12) 0.0286 (12) −0.0122 (9) −0.0004 (10) 0.0016 (10)
C10 0.0410 (15) 0.0290 (13) 0.0341 (13) −0.0167 (11) −0.0040 (12) 0.0064 (11)
C11 0.0471 (17) 0.0233 (12) 0.0422 (15) −0.0103 (11) −0.0149 (13) 0.0060 (11)
C12 0.0369 (15) 0.0291 (13) 0.0359 (14) −0.0065 (11) −0.0144 (12) −0.0011 (11)
C13 0.0533 (19) 0.0326 (14) 0.0516 (17) −0.0004 (13) −0.0134 (15) −0.0062 (13)
C14 0.0288 (14) 0.0317 (13) 0.0305 (13) −0.0088 (10) −0.0033 (11) 0.0012 (10)
C15 0.0244 (12) 0.0296 (12) 0.0249 (12) −0.0096 (10) −0.0043 (10) 0.0030 (10)
C16 0.0250 (13) 0.0258 (12) 0.0303 (12) −0.0090 (10) −0.0050 (10) 0.0033 (10)
C17 0.0323 (14) 0.0343 (13) 0.0343 (14) −0.0098 (11) 0.0054 (12) 0.0006 (11)
C18 0.0371 (15) 0.0327 (13) 0.0425 (15) −0.0160 (12) −0.0046 (12) 0.0101 (12)
C19 0.063 (2) 0.0489 (18) 0.062 (2) −0.0310 (16) 0.0061 (17) 0.0128 (16)
C20 0.0425 (16) 0.0268 (13) 0.0559 (17) −0.0132 (12) −0.0060 (14) 0.0082 (12)
C21 0.0383 (15) 0.0256 (12) 0.0456 (15) −0.0087 (11) 0.0008 (13) −0.0008 (11)

Geometric parameters (Å, °)

Zn1—O1W 1.9922 (16) C7—C8 1.392 (3)
Zn1—O2W 2.0018 (16) C7—H7 0.9300
Zn1—O3 2.0115 (16) C8—C9 1.389 (3)
Zn1—N1 2.1159 (19) C9—H9 0.9300
Zn1—N2 2.1826 (19) C10—C11 1.374 (4)
O1—C1 1.238 (3) C10—H10 0.9300
O2—C1 1.262 (3) C11—C12 1.370 (4)
O3—C2 1.268 (3) C11—H11 0.9300
O4—C2 1.235 (3) C12—C14 1.391 (3)
O5—C3 1.275 (3) C12—C13 1.506 (4)
O5—H5A 0.8200 C13—H13A 0.9600
O6—C3 1.257 (3) C13—H13B 0.9600
O1W—H1WA 0.8444 C13—H13C 0.9600
O1W—H1WB 0.8446 C14—C15 1.387 (3)
O2W—H2WA 0.8460 C14—H14 0.9300
O2W—H2WB 0.8421 C15—C16 1.487 (3)
N1—C10 1.341 (3) C16—C17 1.382 (3)
N1—C15 1.346 (3) C17—C18 1.386 (3)
N2—C21 1.336 (3) C17—H17 0.9300
N2—C16 1.346 (3) C18—C20 1.386 (4)
C1—C4 1.516 (3) C18—C19 1.501 (4)
C2—C8 1.505 (3) C19—H19A 0.9600
C3—C6 1.480 (3) C19—H19B 0.9600
C4—C5 1.384 (3) C19—H19C 0.9600
C4—C9 1.386 (3) C20—C21 1.374 (4)
C5—C6 1.394 (3) C20—H20 0.9300
C5—H5 0.9300 C21—H21 0.9300
C6—C7 1.384 (3)
O1W—Zn1—O2W 117.76 (7) C7—C8—C2 120.5 (2)
O1W—Zn1—O3 99.49 (7) C4—C9—C8 121.6 (2)
O2W—Zn1—O3 94.51 (7) C4—C9—H9 119.2
O1W—Zn1—N1 115.84 (7) C8—C9—H9 119.2
O2W—Zn1—N1 124.77 (8) N1—C10—C11 123.3 (2)
O3—Zn1—N1 89.06 (7) N1—C10—H10 118.3
O1W—Zn1—N2 93.17 (7) C11—C10—H10 118.3
O2W—Zn1—N2 89.03 (7) C12—C11—C10 119.9 (2)
O3—Zn1—N2 163.37 (7) C12—C11—H11 120.1
N1—Zn1—N2 75.66 (7) C10—C11—H11 120.1
C2—O3—Zn1 133.53 (15) C11—C12—C14 117.2 (2)
C3—O5—H5A 109.5 C11—C12—C13 121.7 (2)
Zn1—O1W—H1WA 110.1 C14—C12—C13 121.0 (2)
Zn1—O1W—H1WB 111.0 C12—C13—H13A 109.5
H1WA—O1W—H1WB 112.2 C12—C13—H13B 109.5
Zn1—O2W—H2WA 119.9 H13A—C13—H13B 109.5
Zn1—O2W—H2WB 120.2 C12—C13—H13C 109.5
H2WA—O2W—H2WB 109.6 H13A—C13—H13C 109.5
C10—N1—C15 117.7 (2) H13B—C13—H13C 109.5
C10—N1—Zn1 124.60 (16) C15—C14—C12 120.5 (2)
C15—N1—Zn1 117.70 (14) C15—C14—H14 119.7
C21—N2—C16 118.1 (2) C12—C14—H14 119.7
C21—N2—Zn1 125.98 (17) N1—C15—C14 121.4 (2)
C16—N2—Zn1 115.76 (15) N1—C15—C16 115.7 (2)
O1—C1—O2 125.7 (2) C14—C15—C16 123.0 (2)
O1—C1—C4 117.5 (2) N2—C16—C17 121.5 (2)
O2—C1—C4 116.8 (2) N2—C16—C15 114.79 (19)
O4—C2—O3 126.4 (2) C17—C16—C15 123.7 (2)
O4—C2—C8 118.0 (2) C16—C17—C18 120.8 (2)
O3—C2—C8 115.6 (2) C16—C17—H17 119.6
O6—C3—O5 123.0 (2) C18—C17—H17 119.6
O6—C3—C6 119.6 (2) C17—C18—C20 116.4 (2)
O5—C3—C6 117.45 (19) C17—C18—C19 121.4 (2)
C5—C4—C9 119.4 (2) C20—C18—C19 122.2 (2)
C5—C4—C1 121.50 (19) C18—C19—H19A 109.5
C9—C4—C1 119.1 (2) C18—C19—H19B 109.5
C4—C5—C6 119.9 (2) H19A—C19—H19B 109.5
C4—C5—H5 120.0 C18—C19—H19C 109.5
C6—C5—H5 120.0 H19A—C19—H19C 109.5
C7—C6—C5 120.0 (2) H19B—C19—H19C 109.5
C7—C6—C3 120.7 (2) C21—C20—C18 120.3 (2)
C5—C6—C3 119.27 (19) C21—C20—H20 119.8
C6—C7—C8 120.7 (2) C18—C20—H20 119.8
C6—C7—H7 119.6 N2—C21—C20 122.7 (2)
C8—C7—H7 119.6 N2—C21—H21 118.6
C9—C8—C7 118.4 (2) C20—C21—H21 118.6
C9—C8—C2 121.1 (2)
O1W—Zn1—O3—C2 57.8 (2) O4—C2—C8—C9 −173.5 (2)
O2W—Zn1—O3—C2 −61.4 (2) O3—C2—C8—C9 5.7 (3)
N1—Zn1—O3—C2 173.8 (2) O4—C2—C8—C7 5.3 (3)
N2—Zn1—O3—C2 −163.2 (2) O3—C2—C8—C7 −175.5 (2)
O1W—Zn1—N1—C10 89.3 (2) C5—C4—C9—C8 0.6 (3)
O2W—Zn1—N1—C10 −105.6 (2) C1—C4—C9—C8 179.8 (2)
O3—Zn1—N1—C10 −10.8 (2) C7—C8—C9—C4 −0.3 (3)
N2—Zn1—N1—C10 175.8 (2) C2—C8—C9—C4 178.6 (2)
O1W—Zn1—N1—C15 −88.84 (17) C15—N1—C10—C11 −0.6 (4)
O2W—Zn1—N1—C15 76.23 (18) Zn1—N1—C10—C11 −178.77 (19)
O3—Zn1—N1—C15 171.07 (17) N1—C10—C11—C12 0.7 (4)
N2—Zn1—N1—C15 −2.30 (16) C10—C11—C12—C14 −0.6 (4)
O1W—Zn1—N2—C21 −63.8 (2) C10—C11—C12—C13 179.0 (2)
O2W—Zn1—N2—C21 54.0 (2) C11—C12—C14—C15 0.5 (4)
O3—Zn1—N2—C21 156.6 (2) C13—C12—C14—C15 −179.0 (2)
N1—Zn1—N2—C21 −179.6 (2) C10—N1—C15—C14 0.5 (3)
O1W—Zn1—N2—C16 121.32 (17) Zn1—N1—C15—C14 178.81 (18)
O2W—Zn1—N2—C16 −120.94 (18) C10—N1—C15—C16 −179.1 (2)
O3—Zn1—N2—C16 −18.3 (4) Zn1—N1—C15—C16 −0.8 (3)
N1—Zn1—N2—C16 5.44 (17) C12—C14—C15—N1 −0.5 (4)
Zn1—O3—C2—O4 3.8 (4) C12—C14—C15—C16 179.1 (2)
Zn1—O3—C2—C8 −175.34 (15) C21—N2—C16—C17 −3.1 (4)
O1—C1—C4—C5 −175.4 (2) Zn1—N2—C16—C17 172.22 (19)
O2—C1—C4—C5 3.9 (3) C21—N2—C16—C15 177.2 (2)
O1—C1—C4—C9 5.5 (3) Zn1—N2—C16—C15 −7.5 (3)
O2—C1—C4—C9 −175.3 (2) N1—C15—C16—N2 5.6 (3)
C9—C4—C5—C6 −0.3 (3) C14—C15—C16—N2 −174.0 (2)
C1—C4—C5—C6 −179.5 (2) N1—C15—C16—C17 −174.1 (2)
C4—C5—C6—C7 −0.3 (3) C14—C15—C16—C17 6.2 (4)
C4—C5—C6—C3 −179.9 (2) N2—C16—C17—C18 2.2 (4)
O6—C3—C6—C7 178.6 (2) C15—C16—C17—C18 −178.1 (2)
O5—C3—C6—C7 −1.8 (3) C16—C17—C18—C20 0.2 (4)
O6—C3—C6—C5 −1.8 (3) C16—C17—C18—C19 −179.6 (3)
O5—C3—C6—C5 177.8 (2) C17—C18—C20—C21 −1.6 (4)
C5—C6—C7—C8 0.7 (3) C19—C18—C20—C21 178.2 (3)
C3—C6—C7—C8 −179.8 (2) C16—N2—C21—C20 1.7 (4)
C6—C7—C8—C9 −0.3 (3) Zn1—N2—C21—C20 −173.1 (2)
C6—C7—C8—C2 −179.2 (2) C18—C20—C21—N2 0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O6i 0.82 1.79 2.603 (2) 171
O1W—H1WA···O1ii 0.84 1.81 2.635 (2) 165
O1W—H1WB···O2iii 0.84 1.75 2.593 (2) 171
O2W—H2WA···O2iv 0.85 1.86 2.688 (2) 166
O2W—H2WB···O4v 0.84 1.79 2.633 (2) 176

Symmetry codes: (i) −x−1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x, −y+1, −z+1; (v) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2433).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. (2004). Hydrogen Bonding in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.
  5. Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818. [DOI] [PubMed]
  6. Ockwig, N. W., Delgado-Friedrichs, O., O’Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. pp. 8022–8032. [DOI] [PubMed]
  9. Zang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174–180. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811019519/hy2433sup1.cif

e-67-0m804-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811019519/hy2433Isup2.hkl

e-67-0m804-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES