Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 25;67(Pt 6):o1528. doi: 10.1107/S1600536811018976

2-Oxo-2-phenyl­ethyl benzoate

Hoong-Kun Fun a,*,, Suhana Arshad a, B Garudachari b, Arun M Isloor b, M N Satyanarayan c
PMCID: PMC3120516  PMID: 21754888

Abstract

In the title compound, C15H12O3, the terminal phenyl rings make a dihedral angle of 86.09 (9)° with each other. In the crystal, a pair of inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming a dimer with an R 2 2(10) ring motif.

Related literature

For background to and applications of phenacyl benzoates, see: Huang et al. (1996); Gandhi et al. (1995); Ruzicka et al. (2002); Litera et al. (2006); Sheehan & Umezaw (1973). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o1528-scheme1.jpg

Experimental

Crystal data

  • C15H12O3

  • M r = 240.25

  • Monoclinic, Inline graphic

  • a = 9.0299 (13) Å

  • b = 14.116 (2) Å

  • c = 9.6379 (14) Å

  • β = 90.564 (3)°

  • V = 1228.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.77 × 0.52 × 0.43 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.934, T max = 0.963

  • 23225 measured reflections

  • 3573 independent reflections

  • 2408 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.192

  • S = 1.05

  • 3573 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018976/is2715sup1.cif

e-67-o1528-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018976/is2715Isup2.hkl

e-67-o1528-Isup2.hkl (175.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018976/is2715Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3i 0.97 2.57 3.454 (2) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for a ‘Young scientist’ award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.

supplementary crystallographic information

Comment

In organic chemistry, phenacyl benzoate is a derivative of an acid, formed by reaction between acid and phenacyl bromide. They find applications in the field of synthetic chemistry (Huang et al., 1996; Gandhi et al., 1995) such as synthesis of oxazoles, imidazoles, benzoxazepines. They are also useful for photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka et al., 2002; Litera et al., 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound was synthesized to study its crystal structure.

The molecular structure is shown in Fig. 1. The terminal phenyl rings (C1–C6 and C10–C15) make a dihedral angle of 86.09 (9)° with each other. Bond lengths (Allen et al., 1987) and angles are within normal range. In the crystal packing (Fig. 2), pairs of intermolecular C8—H8B···O3 hydrogen bonds (Table 1) link the molecules to form dimers, generating R22(10) ring motifs (Bernstein et al., 1995).

Experimental

The mixture of benzoic acid (1.0 g, 0.008 mol), sodium carbonate (0.95 g, 0.009 mol) and 2-bromo-1-phenylethanon (1.7 g, 0.009 mol) in dimethyl formamide (10 ml) was stirred at room temperature for 2 h. On cooling, the separated colourless needle-shaped crystals of 2-oxo-2-phenylethyl benzoate were collected by filtration. Compound was recrystallized from ethanol (yield: 1.91 g, 97.4%; m.p: 390–391 K).

Refinement

All H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Dashed lines represent the hydrogen bonds.

Crystal data

C15H12O3 F(000) = 504
Mr = 240.25 Dx = 1.299 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6650 reflections
a = 9.0299 (13) Å θ = 2.6–29.6°
b = 14.116 (2) Å µ = 0.09 mm1
c = 9.6379 (14) Å T = 296 K
β = 90.564 (3)° Block, colourless
V = 1228.4 (3) Å3 0.77 × 0.52 × 0.43 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 3573 independent reflections
Radiation source: fine-focus sealed tube 2408 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.934, Tmax = 0.963 k = −19→19
23225 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.258P] where P = (Fo2 + 2Fc2)/3
3573 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.89801 (19) 0.00806 (10) 0.7007 (2) 0.0993 (6)
O2 0.75397 (14) 0.10379 (9) 0.50588 (15) 0.0704 (4)
O3 0.56279 (16) 0.08421 (9) 0.64940 (17) 0.0813 (4)
C1 0.7648 (2) −0.20439 (12) 0.5344 (2) 0.0647 (4)
H1A 0.6994 −0.1779 0.4702 0.078*
C2 0.7776 (3) −0.30148 (14) 0.5449 (2) 0.0790 (6)
H2A 0.7197 −0.3403 0.4884 0.095*
C3 0.8752 (2) −0.34132 (13) 0.6386 (2) 0.0751 (5)
H3A 0.8843 −0.4068 0.6443 0.090*
C4 0.9593 (2) −0.28413 (15) 0.7237 (2) 0.0762 (5)
H4A 1.0248 −0.3110 0.7876 0.091*
C5 0.9467 (2) −0.18735 (13) 0.7146 (2) 0.0693 (5)
H5A 1.0037 −0.1490 0.7726 0.083*
C6 0.84954 (16) −0.14632 (11) 0.61946 (17) 0.0544 (4)
C7 0.84060 (17) −0.04164 (12) 0.6139 (2) 0.0602 (4)
C8 0.7618 (2) 0.00214 (13) 0.4948 (2) 0.0642 (4)
H8A 0.8123 −0.0145 0.4098 0.077*
H8B 0.6621 −0.0233 0.4891 0.077*
C9 0.64689 (17) 0.13613 (11) 0.59154 (17) 0.0548 (4)
C10 0.64216 (16) 0.24087 (11) 0.60075 (17) 0.0524 (4)
C11 0.7258 (2) 0.29780 (13) 0.5158 (2) 0.0693 (5)
H11A 0.7899 0.2708 0.4520 0.083*
C12 0.7138 (3) 0.39614 (14) 0.5260 (3) 0.0826 (6)
H12A 0.7692 0.4350 0.4683 0.099*
C13 0.6201 (2) 0.43540 (13) 0.6216 (2) 0.0772 (6)
H13A 0.6122 0.5009 0.6284 0.093*
C14 0.5385 (2) 0.37905 (14) 0.7064 (2) 0.0760 (5)
H14A 0.4760 0.4063 0.7713 0.091*
C15 0.5483 (2) 0.28147 (13) 0.6964 (2) 0.0659 (5)
H15A 0.4919 0.2432 0.7540 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1077 (11) 0.0599 (8) 0.1294 (13) 0.0017 (8) −0.0530 (10) −0.0200 (8)
O2 0.0689 (8) 0.0530 (7) 0.0896 (9) 0.0013 (5) 0.0084 (7) 0.0022 (6)
O3 0.0744 (8) 0.0530 (7) 0.1171 (12) −0.0103 (6) 0.0231 (8) 0.0051 (7)
C1 0.0653 (10) 0.0523 (9) 0.0764 (11) −0.0002 (7) −0.0094 (8) −0.0014 (8)
C2 0.0890 (14) 0.0553 (10) 0.0924 (14) −0.0088 (9) −0.0098 (11) −0.0055 (9)
C3 0.0767 (12) 0.0514 (9) 0.0975 (14) 0.0015 (8) 0.0076 (10) 0.0079 (9)
C4 0.0682 (11) 0.0654 (11) 0.0948 (14) 0.0087 (9) −0.0041 (10) 0.0141 (10)
C5 0.0603 (10) 0.0634 (11) 0.0841 (12) 0.0002 (8) −0.0104 (9) 0.0002 (9)
C6 0.0460 (7) 0.0506 (8) 0.0668 (9) 0.0018 (6) 0.0047 (6) −0.0028 (7)
C7 0.0478 (8) 0.0516 (8) 0.0811 (11) 0.0003 (6) −0.0023 (7) −0.0079 (8)
C8 0.0620 (9) 0.0524 (9) 0.0780 (11) 0.0042 (7) −0.0026 (8) −0.0127 (8)
C9 0.0485 (8) 0.0484 (8) 0.0675 (9) −0.0030 (6) −0.0033 (7) 0.0011 (7)
C10 0.0481 (7) 0.0459 (8) 0.0629 (9) −0.0010 (6) −0.0074 (6) 0.0018 (6)
C11 0.0770 (12) 0.0556 (10) 0.0753 (11) −0.0033 (8) 0.0097 (9) 0.0039 (8)
C12 0.1004 (15) 0.0544 (10) 0.0930 (14) −0.0110 (10) 0.0040 (12) 0.0145 (10)
C13 0.0865 (13) 0.0464 (9) 0.0985 (15) 0.0037 (9) −0.0135 (11) −0.0027 (9)
C14 0.0737 (12) 0.0592 (10) 0.0953 (14) 0.0071 (9) 0.0016 (10) −0.0154 (10)
C15 0.0623 (10) 0.0577 (9) 0.0776 (11) −0.0023 (8) 0.0048 (8) −0.0036 (8)

Geometric parameters (Å, °)

O1—C7 1.205 (2) C7—C8 1.481 (3)
O2—C9 1.357 (2) C8—H8A 0.9700
O2—C8 1.441 (2) C8—H8B 0.9700
O3—C9 1.197 (2) C9—C10 1.482 (2)
C1—C2 1.379 (3) C10—C11 1.378 (2)
C1—C6 1.385 (2) C10—C15 1.383 (2)
C1—H1A 0.9300 C11—C12 1.396 (3)
C2—C3 1.376 (3) C11—H11A 0.9300
C2—H2A 0.9300 C12—C13 1.374 (3)
C3—C4 1.375 (3) C12—H12A 0.9300
C3—H3A 0.9300 C13—C14 1.362 (3)
C4—C5 1.374 (3) C13—H13A 0.9300
C4—H4A 0.9300 C14—C15 1.384 (3)
C5—C6 1.389 (2) C14—H14A 0.9300
C5—H5A 0.9300 C15—H15A 0.9300
C6—C7 1.481 (2)
C9—O2—C8 114.58 (13) O2—C8—H8B 109.1
C2—C1—C6 119.97 (17) C7—C8—H8B 109.1
C2—C1—H1A 120.0 H8A—C8—H8B 107.9
C6—C1—H1A 120.0 O3—C9—O2 122.46 (15)
C3—C2—C1 120.47 (19) O3—C9—C10 124.34 (15)
C3—C2—H2A 119.8 O2—C9—C10 113.16 (13)
C1—C2—H2A 119.8 C11—C10—C15 119.85 (16)
C4—C3—C2 119.89 (18) C11—C10—C9 121.99 (15)
C4—C3—H3A 120.1 C15—C10—C9 118.15 (15)
C2—C3—H3A 120.1 C10—C11—C12 119.62 (19)
C5—C4—C3 120.06 (19) C10—C11—H11A 120.2
C5—C4—H4A 120.0 C12—C11—H11A 120.2
C3—C4—H4A 120.0 C13—C12—C11 119.83 (19)
C4—C5—C6 120.55 (18) C13—C12—H12A 120.1
C4—C5—H5A 119.7 C11—C12—H12A 120.1
C6—C5—H5A 119.7 C14—C13—C12 120.46 (18)
C1—C6—C5 119.05 (16) C14—C13—H13A 119.8
C1—C6—C7 122.68 (15) C12—C13—H13A 119.8
C5—C6—C7 118.27 (15) C13—C14—C15 120.29 (19)
O1—C7—C8 119.72 (16) C13—C14—H14A 119.9
O1—C7—C6 122.22 (17) C15—C14—H14A 119.9
C8—C7—C6 118.04 (14) C10—C15—C14 119.94 (18)
O2—C8—C7 112.43 (14) C10—C15—H15A 120.0
O2—C8—H8A 109.1 C14—C15—H15A 120.0
C7—C8—H8A 109.1
C6—C1—C2—C3 −0.7 (3) C8—O2—C9—O3 −2.3 (2)
C1—C2—C3—C4 0.9 (3) C8—O2—C9—C10 179.89 (14)
C2—C3—C4—C5 −0.5 (3) O3—C9—C10—C11 −169.63 (18)
C3—C4—C5—C6 −0.2 (3) O2—C9—C10—C11 8.1 (2)
C2—C1—C6—C5 0.0 (3) O3—C9—C10—C15 9.2 (3)
C2—C1—C6—C7 −179.66 (17) O2—C9—C10—C15 −173.09 (14)
C4—C5—C6—C1 0.4 (3) C15—C10—C11—C12 −0.7 (3)
C4—C5—C6—C7 −179.90 (18) C9—C10—C11—C12 178.10 (18)
C1—C6—C7—O1 169.12 (19) C10—C11—C12—C13 0.7 (3)
C5—C6—C7—O1 −10.6 (3) C11—C12—C13—C14 −0.1 (3)
C1—C6—C7—C8 −12.7 (2) C12—C13—C14—C15 −0.6 (3)
C5—C6—C7—C8 167.58 (16) C11—C10—C15—C14 0.1 (3)
C9—O2—C8—C7 −79.71 (18) C9—C10—C15—C14 −178.74 (16)
O1—C7—C8—O2 −5.0 (2) C13—C14—C15—C10 0.5 (3)
C6—C7—C8—O2 176.76 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···O3i 0.97 2.57 3.454 (2) 152

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2715).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.
  5. Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.
  6. Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723. [DOI] [PubMed]
  7. Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.
  8. Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018976/is2715sup1.cif

e-67-o1528-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018976/is2715Isup2.hkl

e-67-o1528-Isup2.hkl (175.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018976/is2715Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES