Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):m692. doi: 10.1107/S1600536811016096

catena-Poly[[bis­(nitrato-κO)copper(II)]-bis­[μ-1,4-bis­(pyridin-3-ylmeth­oxy)benzene-κ2 N:N′]]

Ping Zou a, Ying Liu b,c, Guang-Feng Hou b, Jin-Sheng Gao b,*
PMCID: PMC3120522  PMID: 21754597

Abstract

In the title compound, [Cu(NO3)2(C18H16N2O2)2]n, the CuII ion lies on an inversion center and is six-coordinated in a Jahn–Teller-distored octa­hedral geometry defined by four N atoms of the pyridine derivative forming a square plane, above and below which are the O atoms of the nitrate anion. The ligand links the metal atoms linto a linear chain running along the a axis. One of the nitrate O atoms is equally disordered over two sets of sites.

Related literature

For the synthesis and background to network structures built up from flexible pyridyl-based aromatic ligands and transition metals, see Liu et al. (2010a ,b ).graphic file with name e-67-0m692-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C18H16N2O2)2]

  • M r = 772.22

  • Monoclinic, Inline graphic

  • a = 8.4859 (17) Å

  • b = 17.030 (3) Å

  • c = 12.986 (4) Å

  • β = 116.22 (2)°

  • V = 1683.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.867, T max = 0.889

  • 16256 measured reflections

  • 3831 independent reflections

  • 3067 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.097

  • S = 1.07

  • 3831 reflections

  • 251 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016096/ng5152sup1.cif

e-67-0m692-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016096/ng5152Isup2.hkl

e-67-0m692-Isup2.hkl (187.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Youth Fundation of the Education Department of Sichuan Province, China (No. 08ZB031), Sichuan Agriculture University, Heilongjiang University and Heilongjiang Institute of Technology for supporting this work.

supplementary crystallographic information

Comment

The bridging pyridyl ligands can be used to construct interesting 0D to three-dimensional supramolecular architectures. Our group has reported some isolated molecule, chain, plane and three-dimensional network structures built up by flexible pyridyl-based aromatic ligands and transition metals. (Liu et al., 2010a; Liu et al., 2010b). As our continuing work for pyridyl ligands, we report here the synthesis and crystal structure of the title compound.

An asymmetric unit of the title compound consists of a 1,4-bis(pyridin-3-ylmethoxy)benzene molecule, a nitrate anion and a CuII cation (Figure 1). The CuII cations lie on the inversion centers and are six-coordinated in the Jahn-Teller distored octahedral geometry environments defined by four N atoms forming the square planes and two O atoms locating the polar axis.

In the crystal, ribbon structures along [2 0 1] direction are built up by heterocyclic ligands bridging CuII cations (Figure 2, Table 1).

Experimental

The 1,4-bis(pyridin-3-ylmethoxy)benzene ligand was synthesized as the reference method (Liu et al., 2010a): A mixture of 1,4-dihydroxybenzene (1.1 g, 10 mmol), 3-chloromethylpyridine hydrochloride (3.28 g, 20 mmol) and NaOH (1.6 g, 40 mmol) in acetonitrile (50 ml) was refluxed under nitrogen with stirring for 24 h. After cooling to room temperature, the solution was filtered and the residue was washed with acetonitrile for several times. The mixed filtrate was droped into 300 ml water solution to get the powder crude product. A total of 2.51 g (yield 86%) pure product was obtained by recrystallizing from the mixed solution of 10 ml water and 10 ml me thanol. The title compound was synthesized by reaction of 1,4-bis(pyridin-3-ylmethoxy)benzene ligand (0.29 g, 1.0 mmol) and Cu(NO3)2.3H2O (0.22 g, 1.0 mmol) in 5 ml water and 5 ml me thanol mixed solution. After filtration, blue block crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature for several days in 46% yield.

Refinement

O4 atom of nitrate was disordered over two positions with site occupancy factors of ca 0.51 and 0.49, and then, the two positions were restraint refined with commond 'Iosr 0.01 O4 O4' '. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms, disordered O4' atom has been omitted for clarity.

Fig. 2.

Fig. 2.

A partial packing view, showing the ribbon structure along [2 0 1] direction. Disordered O4' atoms and no involving H atoms have been omitted for clarity.

Crystal data

[Cu(NO3)2(C18H16N2O2)2] F(000) = 798
Mr = 772.22 Dx = 1.523 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 13022 reflections
a = 8.4859 (17) Å θ = 3.4–27.4°
b = 17.030 (3) Å µ = 0.72 mm1
c = 12.986 (4) Å T = 291 K
β = 116.22 (2)° Block, blue
V = 1683.6 (7) Å3 0.20 × 0.18 × 0.17 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 3831 independent reflections
Radiation source: fine-focus sealed tube 3067 reflections with I > 2σ(I)
graphite Rint = 0.039
ω scans θmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→10
Tmin = 0.867, Tmax = 0.889 k = −22→22
16256 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.4137P] where P = (Fo2 + 2Fc2)/3
3831 reflections (Δ/σ)max < 0.001
251 parameters Δρmax = 0.45 e Å3
12 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 −0.3511 (2) 0.87028 (12) 0.16557 (18) 0.0353 (4)
H1 −0.4698 0.8612 0.1432 0.042*
C2 −0.2290 (3) 0.82377 (13) 0.25037 (19) 0.0383 (5)
H2 −0.2657 0.7837 0.2833 0.046*
C3 −0.0520 (3) 0.83705 (12) 0.28601 (18) 0.0351 (4)
H3 0.0317 0.8065 0.3435 0.042*
C4 −0.0017 (2) 0.89662 (11) 0.23463 (17) 0.0303 (4)
C5 −0.1310 (2) 0.93984 (12) 0.14835 (18) 0.0325 (4)
H5 −0.0970 0.9788 0.1120 0.039*
C6 0.1879 (2) 0.91934 (13) 0.27306 (19) 0.0385 (5)
H6A 0.2070 0.9342 0.2073 0.046*
H6B 0.2181 0.9637 0.3252 0.046*
C7 0.4713 (2) 0.86583 (12) 0.39043 (19) 0.0372 (5)
C8 0.5671 (2) 0.80017 (12) 0.44675 (18) 0.0350 (4)
H8 0.5101 0.7526 0.4415 0.042*
C9 0.7480 (2) 0.80513 (12) 0.51103 (18) 0.0349 (4)
H9 0.8124 0.7609 0.5482 0.042*
C10 0.8320 (2) 0.87615 (12) 0.51957 (18) 0.0360 (5)
C11 0.7367 (3) 0.94163 (13) 0.4634 (2) 0.0419 (5)
H11 0.7937 0.9892 0.4690 0.050*
C12 0.5558 (3) 0.93666 (13) 0.3987 (2) 0.0425 (5)
H12 0.4917 0.9808 0.3611 0.051*
C13 1.1170 (2) 0.82248 (12) 0.63460 (19) 0.0381 (5)
H13A 1.1171 0.7852 0.5781 0.046*
H13B 1.0739 0.7963 0.6835 0.046*
C14 1.2990 (2) 0.85426 (11) 0.70499 (17) 0.0305 (4)
C15 1.4412 (3) 0.83865 (12) 0.68279 (19) 0.0375 (5)
H15 1.4282 0.8078 0.6205 0.045*
C16 1.6027 (3) 0.86992 (12) 0.75514 (19) 0.0377 (5)
H16 1.6998 0.8600 0.7418 0.045*
C17 1.6204 (2) 0.91564 (11) 0.84668 (18) 0.0319 (4)
H17 1.7306 0.9354 0.8955 0.038*
C18 1.3260 (2) 0.90220 (11) 0.79731 (16) 0.0300 (4)
H18 1.2301 0.9139 0.8113 0.036*
Cu1 −0.5000 1.0000 0.0000 0.03106 (12)
N1 −0.30485 (19) 0.92812 (9) 0.11430 (14) 0.0304 (3)
N2 1.48165 (18) 0.93268 (9) 0.86752 (13) 0.0279 (3)
N3 −0.8293 (2) 0.86505 (11) −0.01848 (17) 0.0411 (4)
O1 0.29285 (18) 0.85382 (9) 0.32890 (17) 0.0579 (5)
O2 1.01067 (18) 0.88797 (9) 0.57993 (16) 0.0536 (5)
O3 −0.74035 (19) 0.92569 (8) 0.02595 (14) 0.0421 (4)
O4 −0.9828 (11) 0.8623 (6) −0.035 (2) 0.085 (4) 0.49 (4)
O5 −0.7554 (2) 0.80297 (10) −0.01836 (19) 0.0654 (5)
O4' −0.9848 (9) 0.8748 (6) −0.0923 (18) 0.080 (4) 0.51 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0205 (9) 0.0423 (11) 0.0386 (11) −0.0021 (8) 0.0088 (8) −0.0068 (9)
C2 0.0323 (10) 0.0405 (11) 0.0392 (12) −0.0036 (9) 0.0132 (9) 0.0031 (9)
C3 0.0270 (9) 0.0401 (11) 0.0304 (10) 0.0059 (8) 0.0056 (8) 0.0042 (8)
C4 0.0195 (8) 0.0351 (10) 0.0305 (10) 0.0041 (7) 0.0058 (7) −0.0003 (8)
C5 0.0216 (9) 0.0352 (10) 0.0343 (10) 0.0040 (7) 0.0065 (8) 0.0048 (8)
C6 0.0194 (9) 0.0427 (11) 0.0436 (12) 0.0033 (8) 0.0049 (9) 0.0093 (9)
C7 0.0152 (8) 0.0442 (11) 0.0429 (12) 0.0024 (8) 0.0044 (8) 0.0069 (9)
C8 0.0236 (9) 0.0351 (10) 0.0415 (12) −0.0008 (8) 0.0100 (9) 0.0045 (9)
C9 0.0233 (9) 0.0365 (10) 0.0360 (11) 0.0040 (8) 0.0050 (8) 0.0043 (8)
C10 0.0179 (8) 0.0424 (11) 0.0355 (11) −0.0001 (8) 0.0008 (8) 0.0011 (9)
C11 0.0252 (10) 0.0369 (11) 0.0524 (14) −0.0033 (8) 0.0069 (9) 0.0042 (10)
C12 0.0247 (10) 0.0383 (11) 0.0518 (13) 0.0057 (8) 0.0054 (9) 0.0119 (10)
C13 0.0216 (9) 0.0371 (10) 0.0417 (12) 0.0011 (8) 0.0012 (8) −0.0056 (9)
C14 0.0206 (8) 0.0306 (9) 0.0308 (10) 0.0011 (7) 0.0028 (8) −0.0006 (8)
C15 0.0323 (10) 0.0383 (11) 0.0383 (11) 0.0028 (8) 0.0123 (9) −0.0087 (9)
C16 0.0251 (9) 0.0400 (11) 0.0489 (13) 0.0013 (8) 0.0172 (9) −0.0063 (9)
C17 0.0184 (8) 0.0316 (9) 0.0385 (11) 0.0010 (7) 0.0059 (8) −0.0019 (8)
C18 0.0164 (8) 0.0376 (10) 0.0299 (10) 0.0025 (7) 0.0046 (7) −0.0007 (8)
Cu1 0.01777 (16) 0.03750 (19) 0.02666 (18) 0.00767 (13) −0.00042 (12) −0.00511 (14)
N1 0.0193 (7) 0.0353 (8) 0.0292 (8) 0.0048 (6) 0.0041 (6) −0.0024 (7)
N2 0.0186 (7) 0.0312 (8) 0.0289 (8) 0.0032 (6) 0.0059 (6) −0.0011 (6)
N3 0.0276 (9) 0.0427 (10) 0.0492 (11) −0.0003 (7) 0.0136 (8) 0.0019 (8)
O1 0.0167 (7) 0.0448 (9) 0.0878 (14) 0.0030 (6) 0.0009 (8) 0.0187 (9)
O2 0.0205 (7) 0.0427 (9) 0.0697 (12) −0.0023 (6) −0.0055 (7) 0.0095 (8)
O3 0.0392 (8) 0.0356 (7) 0.0475 (9) −0.0028 (6) 0.0154 (7) −0.0007 (7)
O4 0.028 (2) 0.096 (4) 0.124 (9) 0.000 (2) 0.027 (4) 0.004 (5)
O5 0.0593 (11) 0.0374 (9) 0.0899 (15) 0.0023 (8) 0.0243 (11) −0.0022 (9)
O4' 0.022 (2) 0.086 (4) 0.102 (8) −0.005 (2) 0.001 (3) −0.006 (4)

Geometric parameters (Å, °)

C1—N1 1.341 (3) C13—O2 1.413 (2)
C1—C2 1.380 (3) C13—C14 1.505 (3)
C1—H1 0.9300 C13—H13A 0.9700
C2—C3 1.381 (3) C13—H13B 0.9700
C2—H2 0.9300 C14—C18 1.383 (3)
C3—C4 1.381 (3) C14—C15 1.385 (3)
C3—H3 0.9300 C15—C16 1.381 (3)
C4—C5 1.384 (3) C15—H15 0.9300
C4—C6 1.509 (3) C16—C17 1.373 (3)
C5—N1 1.354 (2) C16—H16 0.9300
C5—H5 0.9300 C17—N2 1.351 (2)
C6—O1 1.412 (2) C17—H17 0.9300
C6—H6A 0.9700 C18—N2 1.334 (2)
C6—H6B 0.9700 C18—H18 0.9300
C7—O1 1.380 (2) Cu1—N2i 2.0153 (16)
C7—C12 1.383 (3) Cu1—N2ii 2.0153 (16)
C7—C8 1.386 (3) Cu1—N1 2.0669 (16)
C8—C9 1.389 (3) Cu1—N1iii 2.0669 (16)
C8—H8 0.9300 Cu1—O3 2.5460 (15)
C9—C10 1.383 (3) N2—Cu1iv 2.0153 (16)
C9—H9 0.9300 N3—O4 1.226 (7)
C10—O2 1.380 (2) N3—O5 1.229 (2)
C10—C11 1.382 (3) N3—O4' 1.253 (8)
C11—C12 1.389 (3) N3—O3 1.259 (2)
C11—H11 0.9300 O4—O4' 0.773 (8)
C12—H12 0.9300
N1—C1—C2 122.43 (18) H13A—C13—H13B 108.7
N1—C1—H1 118.8 C18—C14—C15 117.88 (17)
C2—C1—H1 118.8 C18—C14—C13 118.12 (17)
C1—C2—C3 119.7 (2) C15—C14—C13 124.00 (18)
C1—C2—H2 120.1 C16—C15—C14 118.58 (19)
C3—C2—H2 120.1 C16—C15—H15 120.7
C2—C3—C4 118.72 (18) C14—C15—H15 120.7
C2—C3—H3 120.6 C17—C16—C15 120.29 (18)
C4—C3—H3 120.6 C17—C16—H16 119.9
C3—C4—C5 118.58 (17) C15—C16—H16 119.9
C3—C4—C6 122.69 (17) N2—C17—C16 121.55 (17)
C5—C4—C6 118.65 (18) N2—C17—H17 119.2
N1—C5—C4 123.05 (19) C16—C17—H17 119.2
N1—C5—H5 118.5 N2—C18—C14 123.85 (17)
C4—C5—H5 118.5 N2—C18—H18 118.1
O1—C6—C4 107.81 (17) C14—C18—H18 118.1
O1—C6—H6A 110.1 N2i—Cu1—N2ii 180.000 (1)
C4—C6—H6A 110.1 N2i—Cu1—N1 89.35 (6)
O1—C6—H6B 110.1 N2ii—Cu1—N1 90.65 (6)
C4—C6—H6B 110.1 N2i—Cu1—N1iii 90.65 (6)
H6A—C6—H6B 108.5 N2ii—Cu1—N1iii 89.35 (6)
O1—C7—C12 124.94 (18) N1—Cu1—N1iii 180.000 (1)
O1—C7—C8 115.08 (18) N2i—Cu1—O3 86.22 (6)
C12—C7—C8 119.98 (17) N2ii—Cu1—O3 93.78 (6)
C7—C8—C9 120.21 (19) N1—Cu1—O3 92.59 (6)
C7—C8—H8 119.9 N1iii—Cu1—O3 87.41 (6)
C9—C8—H8 119.9 C1—N1—C5 117.48 (16)
C10—C9—C8 119.67 (18) C1—N1—Cu1 118.31 (12)
C10—C9—H9 120.2 C5—N1—Cu1 123.96 (13)
C8—C9—H9 120.2 C18—N2—C17 117.81 (16)
O2—C10—C11 114.98 (18) C18—N2—Cu1iv 118.98 (12)
O2—C10—C9 124.83 (18) C17—N2—Cu1iv 123.21 (13)
C11—C10—C9 120.18 (17) O4—N3—O5 118.1 (5)
C10—C11—C12 120.20 (19) O4—N3—O4' 36.3 (4)
C10—C11—H11 119.9 O5—N3—O4' 118.6 (4)
C12—C11—H11 119.9 O4—N3—O3 119.1 (5)
C7—C12—C11 119.76 (19) O5—N3—O3 120.22 (18)
C7—C12—H12 120.1 O4'—N3—O3 117.2 (5)
C11—C12—H12 120.1 C7—O1—C6 117.53 (16)
O2—C13—C14 106.10 (16) C10—O2—C13 117.89 (16)
O2—C13—H13A 110.5 N3—O3—Cu1 134.44 (13)
C14—C13—H13A 110.5 O4'—O4—N3 73.8 (10)
O2—C13—H13B 110.5 O4—O4'—N3 69.9 (10)
C14—C13—H13B 110.5

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−2, y, z−1; (iii) −x−1, −y+2, −z; (iv) x+2, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5152).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.
  3. Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016096/ng5152sup1.cif

e-67-0m692-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016096/ng5152Isup2.hkl

e-67-0m692-Isup2.hkl (187.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES