Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1313–o1314. doi: 10.1107/S160053681101614X

(2E)-3-[3-(Benz­yloxy)phen­yl]-1-(2-hy­droxy­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, B K Sarojini b, V Musthafa Khaleel b, B Narayana c
PMCID: PMC3120523  PMID: 21754713

Abstract

In the title compound, C22H18O3, an intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular structure, forming an S(6) ring motif. The central benzene ring forms a dihedral angle of 64.74 (5)° with the phenyl ring and a dihedral angle of 5.58 (5)° with the terminal benzene ring. In the crystal, mol­ecules are linked into columns along the a axis via inter­molecular C—H⋯O hydrogen bonds. C—H⋯π inter­actions involving the centroid of the hy­droxy-substituted benzene ring further stabilize the crystal structure.

Related literature

For the background to chalcones, see: Awad et al. (1960); Coudert et al. (1988); Insuasty et al. (1992, 1997); Kolos et al. (1996); Samshuddin et al. (2010); Fun et al. (2010); Sarojini et al. (2006); Shettigar et al. (2010); Sharma et al. (1997); Ravishankar et al. (2003, 2005); Butcher et al. (2006); Narayana et al. (2007); Sarojini et al. (2007a,b ); Jasinski et al. (2011). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1313-scheme1.jpg

Experimental

Crystal data

  • C22H18O3

  • M r = 330.36

  • Monoclinic, Inline graphic

  • a = 6.6343 (1) Å

  • b = 35.7706 (5) Å

  • c = 8.1537 (1) Å

  • β = 121.879 (1)°

  • V = 1643.12 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.46 × 0.41 × 0.28 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.960, T max = 0.976

  • 23662 measured reflections

  • 5994 independent reflections

  • 5154 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.126

  • S = 1.04

  • 5994 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101614X/sj5129sup1.cif

e-67-o1313-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101614X/sj5129Isup2.hkl

e-67-o1313-Isup2.hkl (293.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101614X/sj5129Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C17–C22 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2 0.96 1.62 2.5121 (11) 152
C5—H5A⋯O3i 0.93 2.47 3.3912 (13) 170
C18—H18A⋯O3ii 0.93 2.48 3.1235 (16) 127
C7—H7BCg1i 0.97 2.75 3.6633 (11) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. VMK thanks P. A. College of Engin­eering for the research facilities.

supplementary crystallographic information

Comment

Chalcones (1,3-diarylpropenones) have been widely used as starting materials in numerous synthetic reactions (Awad et al., 1960; Coudert et al., 1988) including the preparation of fused ring heterocyclic compounds (Insuasty et al., 1992, 1997; Kolos et al., 1996; Samshuddin et al., 2010; Fun et al., 2010). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006; Shettigar et al., 2010). The crystal structures of some of the related chalcones viz: 1-(3,4-dimethoxyphenyl)-3-(3-methylphenyl)prop-2-en-1-one (Sharma et al., 1997), 3-(3,4-dimethoxyphenyl)-1-(4-hydroxy-phenyl)prop-2-en-1-one (Ravishankar et al., 2003), 1-(4-chlorophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (Ravishankar et al., 2005), 3-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)prop-2-en-1-one (Butcher et al., 2006), 3-(2-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Narayana et al., 2007), (2E)-1-(2-hydroxyphenyl)-3-(4-methoxy-phenyl)prop-2-en-1-one, (2E)-1-(2-hydroxyphenyl)-3-[4-(methyl-sulfanyl)phenyl]prop-2-en-1-one (Sarojini et al., 2007a,b) and (2E)-3-(2-anthryl)-1-(2-hydroxyphenyl)prop-2-en-1-one (Jasinski et al., 2011) have been reported. In a continuation of our studies of the structures of chalcones, we report the crystal structure of a new chalcone, (2E)-3-(3-benzyloxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one, C22H18O3, (I).

The molecular strucure of (I) is shown in Fig. 1. An intramolecular O3—H1···O2 hydrogen bond (Table 1) stabilized the molecular structure, forming an S(6) ring motif (Bernstein et al., 1995). The (C8–C13) benzene ring forms a dihedral angle of 64.74 (5)° with the C1–C6 phenyl ring and is almost co-planar with the C17–C22 phenyl ring with a dihedral angle of 5.58 (5)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

In the crystal packing (Fig. 2), the molecules are linked into columns along the a axis via intermolecular C5—H5A···O3 and C18—H18A···O3 hydrogen bonds (Table 1). C–H···π interactions (Table 1) involving the centroids of C17–C22 rings (Cg1) further stabilize the crystal structure.

Experimental

2-Hydroxyacetophenone (1.36 g, 0.01 mol) was mixed with 4-benzyloxybenzaldehyde (2.12 g, 0.01 mol) and dissolved in ethanol (40 ml). To this solution 4 ml of KOH (50%) was added at 278 K. The reaction mixture was stirred for 8 h and poured onto crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the solution of the compound in ethyl alcohol (m. p.: 367–369 K). Composition: Found (calculated) for C22H18O3, C 79.98 (79.93); H: 5.49 (5.52).

Refinement

H1 was located from the difference Fourier map and was fixed at its found position with Uiso(H) = 1.5 Ueq(O) [O–H = 0.9618 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93–0.97 Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C22H18O3 F(000) = 696
Mr = 330.36 Dx = 1.335 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9442 reflections
a = 6.6343 (1) Å θ = 3.0–32.7°
b = 35.7706 (5) Å µ = 0.09 mm1
c = 8.1537 (1) Å T = 100 K
β = 121.879 (1)° Block, yellow
V = 1643.12 (4) Å3 0.46 × 0.41 × 0.28 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5994 independent reflections
Radiation source: fine-focus sealed tube 5154 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→9
Tmin = 0.960, Tmax = 0.976 k = −54→54
23662 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.6186P] where P = (Fo2 + 2Fc2)/3
5994 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22678 (13) −0.12255 (2) 0.64011 (11) 0.01788 (14)
O2 1.16788 (13) 0.04531 (2) 0.73546 (11) 0.01926 (15)
O3 1.37772 (13) 0.10727 (2) 0.82954 (12) 0.01960 (15)
H1 1.3290 0.0824 0.7790 0.029*
C1 0.1804 (2) −0.21718 (3) 0.69912 (16) 0.0233 (2)
H1A 0.3438 −0.2209 0.7668 0.028*
C2 0.0347 (3) −0.24325 (3) 0.71398 (18) 0.0297 (3)
H2A 0.1013 −0.2641 0.7926 0.036*
C3 −0.2084 (2) −0.23818 (3) 0.61239 (18) 0.0283 (2)
H3A −0.3055 −0.2557 0.6219 0.034*
C4 −0.3076 (2) −0.20672 (3) 0.49557 (17) 0.0238 (2)
H4A −0.4713 −0.2033 0.4264 0.029*
C5 −0.16259 (19) −0.18037 (3) 0.48208 (15) 0.01870 (18)
H5A −0.2296 −0.1593 0.4053 0.022*
C6 0.08311 (18) −0.18549 (3) 0.58347 (14) 0.01668 (17)
C7 0.24046 (18) −0.15803 (3) 0.56323 (14) 0.01653 (17)
H7A 0.4030 −0.1670 0.6331 0.020*
H7B 0.1891 −0.1553 0.4282 0.020*
C8 0.37550 (16) −0.09508 (3) 0.64855 (13) 0.01453 (16)
C9 0.53008 (17) −0.09903 (3) 0.58253 (14) 0.01643 (17)
H9A 0.5357 −0.1213 0.5262 0.020*
C10 0.67596 (17) −0.06915 (3) 0.60209 (14) 0.01585 (17)
H10A 0.7794 −0.0719 0.5585 0.019*
C11 0.67167 (16) −0.03522 (3) 0.68526 (13) 0.01424 (16)
C12 0.51140 (17) −0.03170 (3) 0.74868 (14) 0.01541 (17)
H12A 0.5032 −0.0093 0.8028 0.018*
C13 0.36650 (17) −0.06120 (3) 0.73120 (14) 0.01546 (17)
H13A 0.2626 −0.0586 0.7744 0.019*
C14 0.83060 (17) −0.00553 (3) 0.70116 (13) 0.01512 (17)
H14A 0.9183 −0.0100 0.6443 0.018*
C15 0.86482 (17) 0.02778 (3) 0.78915 (14) 0.01564 (17)
H15A 0.7793 0.0338 0.8463 0.019*
C16 1.03580 (16) 0.05459 (3) 0.79541 (13) 0.01431 (16)
C17 1.05437 (16) 0.09259 (3) 0.87343 (13) 0.01351 (16)
C18 0.90277 (17) 0.10566 (3) 0.93231 (14) 0.01700 (17)
H18A 0.7872 0.0898 0.9246 0.020*
C19 0.92093 (19) 0.14160 (3) 1.00144 (15) 0.02028 (19)
H19A 0.8178 0.1497 1.0388 0.024*
C20 1.09498 (19) 0.16556 (3) 1.01480 (15) 0.01988 (19)
H20A 1.1082 0.1897 1.0618 0.024*
C21 1.24825 (18) 0.15361 (3) 0.95848 (14) 0.01802 (18)
H21A 1.3642 0.1697 0.9682 0.022*
C22 1.22862 (16) 0.11736 (3) 0.88693 (13) 0.01474 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0210 (3) 0.0121 (3) 0.0250 (4) −0.0031 (2) 0.0152 (3) −0.0037 (3)
O2 0.0199 (3) 0.0171 (3) 0.0267 (4) −0.0001 (3) 0.0163 (3) −0.0017 (3)
O3 0.0174 (3) 0.0188 (3) 0.0277 (4) −0.0011 (3) 0.0154 (3) −0.0008 (3)
C1 0.0310 (5) 0.0153 (4) 0.0192 (5) 0.0003 (4) 0.0103 (4) 0.0007 (3)
C2 0.0488 (7) 0.0159 (5) 0.0248 (5) −0.0033 (5) 0.0197 (5) 0.0015 (4)
C3 0.0467 (7) 0.0181 (5) 0.0315 (6) −0.0120 (5) 0.0284 (5) −0.0067 (4)
C4 0.0291 (5) 0.0209 (5) 0.0293 (5) −0.0068 (4) 0.0207 (5) −0.0066 (4)
C5 0.0239 (5) 0.0151 (4) 0.0212 (4) −0.0005 (3) 0.0148 (4) −0.0015 (3)
C6 0.0233 (4) 0.0123 (4) 0.0156 (4) −0.0013 (3) 0.0110 (3) −0.0024 (3)
C7 0.0195 (4) 0.0131 (4) 0.0177 (4) 0.0000 (3) 0.0103 (3) −0.0017 (3)
C8 0.0145 (4) 0.0131 (4) 0.0155 (4) −0.0004 (3) 0.0076 (3) −0.0002 (3)
C9 0.0179 (4) 0.0145 (4) 0.0181 (4) −0.0010 (3) 0.0104 (3) −0.0028 (3)
C10 0.0167 (4) 0.0157 (4) 0.0165 (4) −0.0002 (3) 0.0098 (3) −0.0009 (3)
C11 0.0145 (4) 0.0133 (4) 0.0140 (4) 0.0004 (3) 0.0069 (3) 0.0009 (3)
C12 0.0168 (4) 0.0121 (4) 0.0171 (4) 0.0007 (3) 0.0089 (3) 0.0001 (3)
C13 0.0167 (4) 0.0139 (4) 0.0179 (4) 0.0010 (3) 0.0105 (3) −0.0001 (3)
C14 0.0147 (4) 0.0146 (4) 0.0153 (4) 0.0006 (3) 0.0074 (3) 0.0018 (3)
C15 0.0163 (4) 0.0153 (4) 0.0169 (4) −0.0005 (3) 0.0098 (3) 0.0005 (3)
C16 0.0140 (4) 0.0141 (4) 0.0146 (4) 0.0005 (3) 0.0074 (3) 0.0010 (3)
C17 0.0129 (4) 0.0134 (4) 0.0146 (4) 0.0005 (3) 0.0075 (3) 0.0003 (3)
C18 0.0166 (4) 0.0177 (4) 0.0193 (4) 0.0002 (3) 0.0113 (3) −0.0008 (3)
C19 0.0217 (5) 0.0207 (5) 0.0215 (5) 0.0022 (4) 0.0136 (4) −0.0025 (3)
C20 0.0237 (5) 0.0169 (4) 0.0169 (4) 0.0007 (3) 0.0093 (4) −0.0022 (3)
C21 0.0184 (4) 0.0157 (4) 0.0178 (4) −0.0034 (3) 0.0080 (3) −0.0017 (3)
C22 0.0130 (4) 0.0162 (4) 0.0146 (4) 0.0004 (3) 0.0070 (3) 0.0011 (3)

Geometric parameters (Å, °)

O1—C8 1.3683 (11) C10—C11 1.3978 (13)
O1—C7 1.4395 (12) C10—H10A 0.9300
O2—C16 1.2528 (11) C11—C12 1.4123 (13)
O3—C22 1.3477 (11) C11—C14 1.4535 (13)
O3—H1 0.9618 C12—C13 1.3833 (13)
C1—C2 1.3942 (17) C12—H12A 0.9300
C1—C6 1.3956 (14) C13—H13A 0.9300
C1—H1A 0.9300 C14—C15 1.3467 (13)
C2—C3 1.382 (2) C14—H14A 0.9300
C2—H2A 0.9300 C15—C16 1.4656 (13)
C3—C4 1.3946 (17) C15—H15A 0.9300
C3—H3A 0.9300 C16—C17 1.4780 (13)
C4—C5 1.3924 (14) C17—C18 1.4038 (13)
C4—H4A 0.9300 C17—C22 1.4139 (13)
C5—C6 1.3966 (15) C18—C19 1.3833 (14)
C5—H5A 0.9300 C18—H18A 0.9300
C6—C7 1.5044 (14) C19—C20 1.3952 (15)
C7—H7A 0.9700 C19—H19A 0.9300
C7—H7B 0.9700 C20—C21 1.3860 (15)
C8—C9 1.3945 (13) C20—H20A 0.9300
C8—C13 1.4031 (13) C21—C22 1.3996 (14)
C9—C10 1.3933 (13) C21—H21A 0.9300
C9—H9A 0.9300
C8—O1—C7 116.46 (7) C10—C11—C14 118.56 (8)
C22—O3—H1 104.7 C12—C11—C14 123.57 (8)
C2—C1—C6 120.49 (11) C13—C12—C11 120.71 (9)
C2—C1—H1A 119.8 C13—C12—H12A 119.6
C6—C1—H1A 119.8 C11—C12—H12A 119.6
C3—C2—C1 120.24 (11) C12—C13—C8 120.33 (9)
C3—C2—H2A 119.9 C12—C13—H13A 119.8
C1—C2—H2A 119.9 C8—C13—H13A 119.8
C2—C3—C4 119.74 (11) C15—C14—C11 127.18 (9)
C2—C3—H3A 120.1 C15—C14—H14A 116.4
C4—C3—H3A 120.1 C11—C14—H14A 116.4
C5—C4—C3 120.24 (11) C14—C15—C16 120.47 (9)
C5—C4—H4A 119.9 C14—C15—H15A 119.8
C3—C4—H4A 119.9 C16—C15—H15A 119.8
C4—C5—C6 120.25 (10) O2—C16—C15 120.07 (9)
C4—C5—H5A 119.9 O2—C16—C17 119.68 (8)
C6—C5—H5A 119.9 C15—C16—C17 120.26 (8)
C1—C6—C5 119.03 (10) C18—C17—C22 117.95 (9)
C1—C6—C7 120.27 (9) C18—C17—C16 122.79 (8)
C5—C6—C7 120.66 (9) C22—C17—C16 119.25 (8)
O1—C7—C6 108.71 (8) C19—C18—C17 121.67 (9)
O1—C7—H7A 109.9 C19—C18—H18A 119.2
C6—C7—H7A 109.9 C17—C18—H18A 119.2
O1—C7—H7B 109.9 C18—C19—C20 119.54 (9)
C6—C7—H7B 109.9 C18—C19—H19A 120.2
H7A—C7—H7B 108.3 C20—C19—H19A 120.2
O1—C8—C9 124.44 (8) C21—C20—C19 120.43 (9)
O1—C8—C13 115.60 (8) C21—C20—H20A 119.8
C9—C8—C13 119.96 (9) C19—C20—H20A 119.8
C10—C9—C8 119.09 (9) C20—C21—C22 120.05 (9)
C10—C9—H9A 120.5 C20—C21—H21A 120.0
C8—C9—H9A 120.5 C22—C21—H21A 120.0
C9—C10—C11 122.04 (9) O3—C22—C21 117.97 (9)
C9—C10—H10A 119.0 O3—C22—C17 121.68 (9)
C11—C10—H10A 119.0 C21—C22—C17 120.35 (9)
C10—C11—C12 117.87 (8)
C6—C1—C2—C3 0.73 (17) C9—C8—C13—C12 −0.39 (14)
C1—C2—C3—C4 −0.38 (17) C10—C11—C14—C15 −174.62 (9)
C2—C3—C4—C5 −0.40 (17) C12—C11—C14—C15 5.66 (15)
C3—C4—C5—C6 0.83 (16) C11—C14—C15—C16 178.92 (9)
C2—C1—C6—C5 −0.30 (15) C14—C15—C16—O2 −6.92 (14)
C2—C1—C6—C7 −178.15 (10) C14—C15—C16—C17 173.44 (9)
C4—C5—C6—C1 −0.47 (15) O2—C16—C17—C18 176.07 (9)
C4—C5—C6—C7 177.37 (9) C15—C16—C17—C18 −4.29 (14)
C8—O1—C7—C6 174.51 (8) O2—C16—C17—C22 −2.76 (13)
C1—C6—C7—O1 −117.15 (10) C15—C16—C17—C22 176.88 (8)
C5—C6—C7—O1 65.04 (11) C22—C17—C18—C19 0.09 (14)
C7—O1—C8—C9 2.20 (13) C16—C17—C18—C19 −178.75 (9)
C7—O1—C8—C13 −177.49 (8) C17—C18—C19—C20 −0.48 (15)
O1—C8—C9—C10 −178.92 (9) C18—C19—C20—C21 0.32 (16)
C13—C8—C9—C10 0.75 (14) C19—C20—C21—C22 0.24 (15)
C8—C9—C10—C11 −0.25 (15) C20—C21—C22—O3 178.42 (9)
C9—C10—C11—C12 −0.60 (14) C20—C21—C22—C17 −0.64 (14)
C9—C10—C11—C14 179.67 (9) C18—C17—C22—O3 −178.55 (9)
C10—C11—C12—C13 0.97 (14) C16—C17—C22—O3 0.33 (14)
C14—C11—C12—C13 −179.32 (9) C18—C17—C22—C21 0.47 (14)
C11—C12—C13—C8 −0.49 (14) C16—C17—C22—C21 179.36 (8)
O1—C8—C13—C12 179.31 (8)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 benzene ring.
D—H···A D—H H···A D···A D—H···A
O3—H1···O2 0.96 1.62 2.5121 (11) 152
C5—H5A···O3i 0.93 2.47 3.3912 (13) 170
C18—H18A···O3ii 0.93 2.48 3.1235 (16) 127
C7—H7B···Cg1i 0.97 2.75 3.6633 (11) 158

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5129).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Awad, W., El-Neweihy, M. & Selim, F. (1960). J. Org. Chem. 25, 1333–1336.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799–802.
  8. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865. [DOI] [PMC free article] [PubMed]
  9. Insuasty, B., Abonia, R. & Quiroga, J. (1992). An. Quim. 88, 718–720.
  10. Insuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83–89.
  11. Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o795. [DOI] [PMC free article] [PubMed]
  12. Kolos, N., Orlov, V., Arisa, D., Shishkin, O., Struchkov, T. & Vorobiova, N. (1996). Khim. Geterotsikl. Soedin. pp. 87–95; Chem. Abstr. 125, 195600.
  13. Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Private communication.
  14. Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o405–o407.
  15. Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143–o1145.
  16. Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. [DOI] [PMC free article] [PubMed]
  17. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  18. Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007a). Acta Cryst. E63, o4447.
  19. Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007b). Acta Cryst. E63, o4448.
  20. Sharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438–1440.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Shettigar, S., Poornesh, P., Umesh, G., Sarojini, B. K., Narayana, B. & Prakash Kamath, K. (2010). Opt. Laser Technol. 42, 1162–1166.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101614X/sj5129sup1.cif

e-67-o1313-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101614X/sj5129Isup2.hkl

e-67-o1313-Isup2.hkl (293.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101614X/sj5129Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES