Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 14;67(Pt 6):o1424. doi: 10.1107/S1600536811017089

Dimethyl 2-(3-chloro­phen­yl)-6-hy­droxy-6-methyl-4-(methyl­amino)­cyclo­hex-3-ene-1,3-dicarboxyl­ate

S Amirthaganesan a, S Sundaramoorthy b, D Velmurugan b, Y T Jeong a,*
PMCID: PMC3120530  PMID: 21754804

Abstract

In the title compound, C18H22ClNO5, the cyclo­hexene ring adopts a distorted half-chair conformation. The mol­ecular structure is stabilized by pairs of intra­molecular N—H⋯O and O—H⋯O inter­actions, generating S(6) motifs. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming centrosymmetric dimers.

Related literature

For the synthesis see: Pandiarajan et al. (2005). For related structures, see: Amézquita-Valencia et al. (2009, 2010); Venter et al. (2010). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o1424-scheme1.jpg

Experimental

Crystal data

  • C18H22ClNO5

  • M r = 367.82

  • Monoclinic, Inline graphic

  • a = 11.962 (3) Å

  • b = 9.118 (4) Å

  • c = 17.704 (5) Å

  • β = 104.890 (3)°

  • V = 1866.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.2 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.944, T max = 0.955

  • 17431 measured reflections

  • 4638 independent reflections

  • 3337 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.138

  • S = 1.04

  • 4638 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017089/bt5540sup1.cif

e-67-o1424-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017089/bt5540Isup2.hkl

e-67-o1424-Isup2.hkl (222.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.0 2.673 (2) 134
O3—H4A⋯O4 0.82 2.39 2.990 (2) 131
C15—H15B⋯O1i 0.96 2.52 3.327 (3) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was supported financially by Pukyong National University in the 2009 Post-Doc. Program. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC&SAP) for financial support.

supplementary crystallographic information

Comment

The title compound has been obtained as a minor product during the synthesis of 2,4-bismethoxycarbonyl-3-(3-chlorophenyl)- 5-hydroxy-5-methylcyclohexanone (Pandiarajan et al., 2005). The synthesized cyclohexanone has been purified by the recrystallization process in ethanol solvent. The expected compound regenerated and settled as powder along with some small crystals. The obtained crystals were analysed by single-crystal XRD and the results clearly evidence the formation of the title compound.

The ORTEP diagram of the title compound is shown in Fig.1. The cyclohexane ring adopts a distorted half-chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.4038 (16) Å, q3 = -0.3083 (16) Å, QT = 0.5080 (16) Å, and θ = 127.36 (18)°. Atom Cl1 deviates from the plane of the C1—C6 benzene ring by 0.034 (1) Å.

The crystal packing is stabilized by C—H···O intermolecular interactions. The molecular structure is stabilized by N—H···O and O—H···O hydrogen bonds, wherein, atom N1 and O3 act as donor to O1 and O4, to generate S(6) motifs, respectively. In the crystal structure, the molecules at (x, y, z) and (1 - x,1 - y,1 - z) are linked by C(15)—H(15B) ···O(1) hydrogen bonds, generating a centrosymmetric dimeric ring motif R22(14) (Bernstein et al., 1995).

Experimental

A mixture of 3-chlorobenzaldehyde (1 equvi) and methyl acetoacetate (2 equvi) and 40% methylamine solution (1 equvi) in ethanol was kept in hot water bath for about 30 minutes. It was kept aside for a day. The separated solid was recrystallized from ethanol.

Refinement

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed along a face. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted

Crystal data

C18H22ClNO5 F(000) = 776
Mr = 367.82 Dx = 1.309 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1222 reflections
a = 11.962 (3) Å θ = 1.8–28.3°
b = 9.118 (4) Å µ = 0.23 mm1
c = 17.704 (5) Å T = 293 K
β = 104.890 (3)° Block, colourless
V = 1866.1 (11) Å3 0.25 × 0.22 × 0.2 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 4638 independent reflections
Radiation source: fine-focus sealed tube 3337 reflections with I > 2σ(I)
graphite Rint = 0.024
ω and φ scans θmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −15→15
Tmin = 0.944, Tmax = 0.955 k = −7→12
17431 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.4709P] where P = (Fo2 + 2Fc2)/3
4638 reflections (Δ/σ)max = 0.009
231 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.20024 (13) 0.2336 (2) 0.66810 (9) 0.0491 (4)
H1 0.2693 0.1975 0.6606 0.059*
C2 0.10067 (15) 0.1499 (2) 0.64705 (10) 0.0606 (5)
C3 −0.00304 (16) 0.2004 (3) 0.65606 (12) 0.0762 (7)
H3 −0.0696 0.1434 0.6412 0.091*
C4 −0.00607 (16) 0.3366 (4) 0.68751 (14) 0.0845 (8)
H4 −0.0757 0.3722 0.6944 0.101*
C5 0.09225 (15) 0.4229 (3) 0.70946 (12) 0.0671 (5)
H5 0.0881 0.5157 0.7303 0.081*
C6 0.19700 (12) 0.37074 (19) 0.70030 (9) 0.0454 (4)
C7 0.30800 (12) 0.45902 (17) 0.72953 (8) 0.0404 (3)
H7 0.2868 0.5589 0.7408 0.048*
C8 0.37441 (12) 0.38775 (16) 0.80710 (8) 0.0405 (3)
H8 0.3766 0.2816 0.7989 0.049*
C9 0.49940 (13) 0.44328 (17) 0.83388 (9) 0.0421 (3)
C10 0.56091 (13) 0.39960 (18) 0.77252 (9) 0.0450 (3)
H10A 0.6358 0.4475 0.7843 0.054*
H10B 0.5743 0.2946 0.7758 0.054*
C11 0.49636 (13) 0.43744 (17) 0.68999 (9) 0.0410 (3)
C12 0.38012 (13) 0.46821 (16) 0.67106 (8) 0.0404 (3)
C13 0.32399 (14) 0.51982 (17) 0.59341 (9) 0.0444 (3)
C14 0.15531 (18) 0.6312 (3) 0.51469 (11) 0.0699 (5)
H14A 0.1977 0.7082 0.4976 0.105*
H14B 0.0818 0.6681 0.5184 0.105*
H14C 0.1435 0.5519 0.4778 0.105*
C15 0.68410 (14) 0.4189 (2) 0.65474 (11) 0.0597 (5)
H15A 0.7225 0.4980 0.6869 0.090*
H15B 0.7075 0.4172 0.6068 0.090*
H15C 0.7045 0.3276 0.6818 0.090*
C16 0.56123 (15) 0.3786 (2) 0.91304 (9) 0.0558 (4)
H16A 0.6418 0.4041 0.9251 0.084*
H16B 0.5533 0.2738 0.9112 0.084*
H16C 0.5276 0.4172 0.9526 0.084*
C17 0.31063 (14) 0.41559 (19) 0.86895 (9) 0.0469 (4)
C18 0.2187 (3) 0.3077 (3) 0.95785 (16) 0.0975 (9)
H18A 0.2735 0.3321 1.0061 0.146*
H18B 0.1814 0.2168 0.9638 0.146*
H18C 0.1618 0.3840 0.9442 0.146*
N1 0.56045 (12) 0.43967 (18) 0.63774 (8) 0.0528 (4)
H1A 0.5244 0.4549 0.5897 0.063*
O1 0.36279 (10) 0.51675 (14) 0.53585 (7) 0.0560 (3)
O2 0.21941 (10) 0.57946 (15) 0.58975 (7) 0.0584 (3)
O3 0.50425 (11) 0.59997 (12) 0.83719 (7) 0.0542 (3)
H4A 0.4653 0.6298 0.8660 0.081*
O4 0.29242 (13) 0.53525 (15) 0.89139 (8) 0.0645 (4)
O5 0.27827 (13) 0.29272 (15) 0.89645 (8) 0.0682 (4)
Cl1 0.10795 (6) −0.02490 (8) 0.60884 (5) 0.1010 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0376 (8) 0.0622 (10) 0.0469 (8) −0.0061 (7) 0.0098 (6) 0.0010 (8)
C2 0.0497 (9) 0.0767 (13) 0.0517 (10) −0.0198 (9) 0.0062 (8) 0.0058 (9)
C3 0.0414 (10) 0.119 (2) 0.0647 (12) −0.0225 (11) 0.0068 (8) 0.0159 (13)
C4 0.0342 (9) 0.140 (2) 0.0821 (15) 0.0098 (12) 0.0193 (9) 0.0128 (16)
C5 0.0430 (9) 0.0944 (15) 0.0655 (11) 0.0141 (10) 0.0169 (8) −0.0020 (11)
C6 0.0350 (7) 0.0616 (10) 0.0400 (7) 0.0044 (7) 0.0102 (6) 0.0052 (7)
C7 0.0387 (7) 0.0420 (8) 0.0394 (7) 0.0054 (6) 0.0081 (6) −0.0008 (6)
C8 0.0421 (7) 0.0376 (7) 0.0403 (7) 0.0038 (6) 0.0079 (6) −0.0009 (6)
C9 0.0426 (8) 0.0385 (8) 0.0417 (7) 0.0042 (6) 0.0044 (6) −0.0030 (6)
C10 0.0374 (7) 0.0481 (8) 0.0466 (8) 0.0037 (6) 0.0055 (6) −0.0020 (7)
C11 0.0403 (7) 0.0386 (7) 0.0437 (8) −0.0035 (6) 0.0102 (6) −0.0024 (6)
C12 0.0397 (7) 0.0400 (7) 0.0403 (7) −0.0017 (6) 0.0082 (6) −0.0007 (6)
C13 0.0426 (8) 0.0434 (8) 0.0448 (8) −0.0040 (6) 0.0067 (6) −0.0010 (6)
C14 0.0613 (11) 0.0841 (14) 0.0560 (10) 0.0188 (10) −0.0002 (9) 0.0116 (10)
C15 0.0439 (9) 0.0733 (12) 0.0662 (11) 0.0014 (8) 0.0220 (8) 0.0039 (9)
C16 0.0540 (9) 0.0634 (11) 0.0444 (8) 0.0121 (8) 0.0024 (7) 0.0013 (8)
C17 0.0467 (8) 0.0512 (9) 0.0415 (8) 0.0065 (7) 0.0089 (6) 0.0045 (7)
C18 0.119 (2) 0.0965 (19) 0.1025 (18) 0.0165 (16) 0.0740 (17) 0.0306 (15)
N1 0.0410 (7) 0.0695 (9) 0.0493 (8) −0.0001 (6) 0.0142 (6) 0.0047 (7)
O1 0.0550 (7) 0.0707 (8) 0.0418 (6) −0.0006 (6) 0.0115 (5) 0.0031 (6)
O2 0.0510 (7) 0.0724 (8) 0.0494 (6) 0.0148 (6) 0.0085 (5) 0.0126 (6)
O3 0.0582 (7) 0.0396 (6) 0.0613 (7) 0.0005 (5) 0.0093 (6) −0.0078 (5)
O4 0.0821 (9) 0.0578 (8) 0.0607 (8) 0.0108 (7) 0.0313 (7) −0.0045 (6)
O5 0.0826 (9) 0.0585 (8) 0.0754 (9) 0.0083 (7) 0.0420 (7) 0.0149 (7)
Cl1 0.0875 (4) 0.0874 (5) 0.1206 (5) −0.0422 (3) 0.0133 (4) −0.0251 (4)

Geometric parameters (Å, °)

C1—C6 1.379 (2) C11—N1 1.345 (2)
C1—C2 1.383 (2) C11—C12 1.373 (2)
C1—H1 0.9300 C12—C13 1.445 (2)
C2—C3 1.370 (3) C13—O1 1.2237 (19)
C2—Cl1 1.743 (2) C13—O2 1.350 (2)
C3—C4 1.365 (4) C14—O2 1.433 (2)
C3—H3 0.9300 C14—H14A 0.9600
C4—C5 1.385 (3) C14—H14B 0.9600
C4—H4 0.9300 C14—H14C 0.9600
C5—C6 1.388 (2) C15—N1 1.444 (2)
C5—H5 0.9300 C15—H15A 0.9600
C6—C7 1.525 (2) C15—H15B 0.9600
C7—C12 1.511 (2) C15—H15C 0.9600
C7—C8 1.542 (2) C16—H16A 0.9600
C7—H7 0.9800 C16—H16B 0.9600
C8—C17 1.508 (2) C16—H16C 0.9600
C8—C9 1.534 (2) C17—O4 1.200 (2)
C8—H8 0.9800 C17—O5 1.319 (2)
C9—O3 1.430 (2) C18—O5 1.451 (2)
C9—C10 1.514 (2) C18—H18A 0.9600
C9—C16 1.525 (2) C18—H18B 0.9600
C10—C11 1.507 (2) C18—H18C 0.9600
C10—H10A 0.9700 N1—H1A 0.8600
C10—H10B 0.9700 O3—H4A 0.8200
C6—C1—C2 119.88 (16) N1—C11—C12 123.34 (14)
C6—C1—H1 120.1 N1—C11—C10 115.45 (13)
C2—C1—H1 120.1 C12—C11—C10 121.20 (13)
C3—C2—C1 121.8 (2) C11—C12—C13 119.52 (14)
C3—C2—Cl1 119.31 (16) C11—C12—C7 122.84 (13)
C1—C2—Cl1 118.94 (16) C13—C12—C7 117.55 (13)
C4—C3—C2 118.21 (19) O1—C13—O2 120.94 (14)
C4—C3—H3 120.9 O1—C13—C12 127.01 (15)
C2—C3—H3 120.9 O2—C13—C12 112.03 (13)
C3—C4—C5 121.43 (19) O2—C14—H14A 109.5
C3—C4—H4 119.3 O2—C14—H14B 109.5
C5—C4—H4 119.3 H14A—C14—H14B 109.5
C4—C5—C6 120.0 (2) O2—C14—H14C 109.5
C4—C5—H5 120.0 H14A—C14—H14C 109.5
C6—C5—H5 120.0 H14B—C14—H14C 109.5
C1—C6—C5 118.74 (17) N1—C15—H15A 109.5
C1—C6—C7 120.30 (13) N1—C15—H15B 109.5
C5—C6—C7 120.86 (17) H15A—C15—H15B 109.5
C12—C7—C6 113.42 (12) N1—C15—H15C 109.5
C12—C7—C8 112.29 (12) H15A—C15—H15C 109.5
C6—C7—C8 106.51 (12) H15B—C15—H15C 109.5
C12—C7—H7 108.1 C9—C16—H16A 109.5
C6—C7—H7 108.1 C9—C16—H16B 109.5
C8—C7—H7 108.1 H16A—C16—H16B 109.5
C17—C8—C9 110.78 (12) C9—C16—H16C 109.5
C17—C8—C7 109.55 (12) H16A—C16—H16C 109.5
C9—C8—C7 111.98 (12) H16B—C16—H16C 109.5
C17—C8—H8 108.1 O4—C17—O5 123.70 (16)
C9—C8—H8 108.1 O4—C17—C8 124.20 (15)
C7—C8—H8 108.1 O5—C17—C8 112.10 (14)
O3—C9—C10 105.67 (13) O5—C18—H18A 109.5
O3—C9—C16 110.09 (13) O5—C18—H18B 109.5
C10—C9—C16 110.33 (13) H18A—C18—H18B 109.5
O3—C9—C8 111.62 (12) O5—C18—H18C 109.5
C10—C9—C8 107.83 (12) H18A—C18—H18C 109.5
C16—C9—C8 111.13 (14) H18B—C18—H18C 109.5
C11—C10—C9 114.41 (13) C11—N1—C15 126.10 (14)
C11—C10—H10A 108.7 C11—N1—H1A 117.0
C9—C10—H10A 108.7 C15—N1—H1A 117.0
C11—C10—H10B 108.7 C13—O2—C14 116.46 (14)
C9—C10—H10B 108.7 C9—O3—H4A 109.5
H10A—C10—H10B 107.6 C17—O5—C18 116.35 (16)
C6—C1—C2—C3 1.1 (3) C8—C9—C10—C11 49.17 (18)
C6—C1—C2—Cl1 −178.36 (12) C9—C10—C11—N1 161.63 (14)
C1—C2—C3—C4 −0.7 (3) C9—C10—C11—C12 −17.9 (2)
Cl1—C2—C3—C4 178.76 (17) N1—C11—C12—C13 −6.3 (2)
C2—C3—C4—C5 0.4 (3) C10—C11—C12—C13 173.14 (14)
C3—C4—C5—C6 −0.6 (3) N1—C11—C12—C7 177.30 (14)
C2—C1—C6—C5 −1.2 (2) C10—C11—C12—C7 −3.2 (2)
C2—C1—C6—C7 175.25 (15) C6—C7—C12—C11 −130.26 (16)
C4—C5—C6—C1 1.0 (3) C8—C7—C12—C11 −9.5 (2)
C4—C5—C6—C7 −175.46 (17) C6—C7—C12—C13 53.32 (18)
C1—C6—C7—C12 49.45 (19) C8—C7—C12—C13 174.13 (13)
C5—C6—C7—C12 −134.17 (16) C11—C12—C13—O1 13.8 (3)
C1—C6—C7—C8 −74.57 (17) C7—C12—C13—O1 −169.67 (15)
C5—C6—C7—C8 101.81 (17) C11—C12—C13—O2 −164.39 (14)
C12—C7—C8—C17 165.93 (13) C7—C12—C13—O2 12.1 (2)
C6—C7—C8—C17 −69.36 (16) C9—C8—C17—O4 62.5 (2)
C12—C7—C8—C9 42.61 (17) C7—C8—C17—O4 −61.5 (2)
C6—C7—C8—C9 167.32 (12) C9—C8—C17—O5 −116.62 (15)
C17—C8—C9—O3 −69.40 (16) C7—C8—C17—O5 119.35 (15)
C7—C8—C9—O3 53.22 (16) C12—C11—N1—C15 175.24 (17)
C17—C8—C9—C10 174.96 (12) C10—C11—N1—C15 −4.3 (2)
C7—C8—C9—C10 −62.42 (16) O1—C13—O2—C14 3.0 (2)
C17—C8—C9—C16 53.92 (17) C12—C13—O2—C14 −178.66 (16)
C7—C8—C9—C16 176.54 (13) O4—C17—O5—C18 −0.7 (3)
O3—C9—C10—C11 −70.31 (16) C8—C17—O5—C18 178.47 (18)
C16—C9—C10—C11 170.72 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.86 2.0 2.673 (2) 134
O3—H4A···O4 0.82 2.39 2.990 (2) 131
C15—H15B···O1i 0.96 2.52 3.327 (3) 142

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5540).

References

  1. Amézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A. & Cabrera, A. (2010). Acta Cryst. E66, o500. [DOI] [PMC free article] [PubMed]
  2. Amézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A., Toscano, R. A. & Cabrera, A. (2009). Acta Cryst. E65, o2728. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  8. Pandiarajan, K., Sabapathy Mohan, R. T., Gomathi, R. & Muthukumaran, G. (2005). Mag. Reson. Chem. 43, 430–434. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Venter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011–o3012. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017089/bt5540sup1.cif

e-67-o1424-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017089/bt5540Isup2.hkl

e-67-o1424-Isup2.hkl (222.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES