Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1325. doi: 10.1107/S1600536811016229

5-Methyl-7,8,9,10-tetra­hydro­cyclo­hepta­[b]indol-6(5H)-one

R Archana a, E Yamuna b, K J Rajendra Prasad b, A Thiruvalluvar a,*, R J Butcher c
PMCID: PMC3120537  PMID: 21754722

Abstract

In the title mol­ecule, C14H15NO, the dihedral angle between the benzene and pyrrole rings is 1.99 (12)°. The cyclo­heptene ring adopts a slightly distorted boat conformation.

Related literature

For the inter­est and importance of indole derivatives, see: Csomós et al. (2007). For pyrido-fused cyclo­hept[b]indole alkaloids, see: Bennasar et al. (1997). For crystallographic studies of cyclo­hept[b]indoles, see: Archana et al. (2010).graphic file with name e-67-o1325-scheme1.jpg

Experimental

Crystal data

  • C14H15NO

  • M r = 213.27

  • Orthorhombic, Inline graphic

  • a = 8.6999 (2) Å

  • b = 14.1805 (3) Å

  • c = 9.1392 (3) Å

  • V = 1127.49 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 295 K

  • 0.47 × 0.35 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.803, T max = 1.000

  • 1184 measured reflections

  • 1184 independent reflections

  • 1148 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.106

  • S = 1.07

  • 1184 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016229/hg5032sup1.cif

e-67-o1325-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016229/hg5032Isup2.hkl

e-67-o1325-Isup2.hkl (57.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016229/hg5032Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Indole derivatives condensed with different heterocycles are physiologically active compounds found in abundance in materials such as pharmaceuticals, alkaloids and potential therapeutic agents (Csomós et al., 2007). Ervitsine and Ervatamine (Bennasar et al., 1997) were important class of pyrido fused cyclohept[b]indole alkaloids. Recently we have reported crystallographic studies for some cyclohept[b]indoles in our laboratory (Archana et al., 2010).

The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C14H15NO, the dihedral angle between the benzene and pyrrole rings is 1.99 (12)°. The cycloheptene ring adopts a slightly distorted boat conformation.

Experimental

To a solution of 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one (0.199 g, 0.001 mol) in 5 ml acetone added powdered KOH (0.280 g, 0.005 mol) in ice cold condition. After few minutes methyl iodide (0.13 ml, 0.002 mol) was added drop by drop with vigorous stirring and the reaction mixture was stirrired for 15 min at room temperature. Benzene was added to the reaction mixture and insoluble materials are removed by filtration. The benzene solution was washed with saturated NaCl solution, dried by using Na2SO4 and evaporation yielded the title compound (0.191 g, 90%). This was recrystallized from benzene and ethyl acetate mixture.

Refinement

Owing to the absence of any anamalous scatterers in the molecule, the Friedel pairs were merged. The absolute structure in the present model have been chosen arbitrarily. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 - 1.5 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Crystal data

C14H15NO Dx = 1.256 Mg m3
Mr = 213.27 Melting point: 338 K
Orthorhombic, Pca21 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2ac Cell parameters from 2006 reflections
a = 8.6999 (2) Å θ = 4.8–73.4°
b = 14.1805 (3) Å µ = 0.62 mm1
c = 9.1392 (3) Å T = 295 K
V = 1127.49 (5) Å3 Chunk, pale-yellow
Z = 4 0.47 × 0.35 × 0.20 mm
F(000) = 456

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 1184 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1148 reflections with I > 2σ(I)
graphite Rint = 0.020
Detector resolution: 10.5081 pixels mm-1 θmax = 73.6°, θmin = 6.0°
ω scans h = 0→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = 0→17
Tmin = 0.803, Tmax = 1.000 l = 0→11
1184 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.0651P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.14 e Å3
1184 reflections Δρmin = −0.13 e Å3
147 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.018 (2)
Primary atom site location: structure-invariant direct methods Absolute structure: see Refinement section in Supplementary materials
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O6 0.5677 (3) 0.05292 (17) 0.4636 (4) 0.1141 (10)
N5 0.4250 (2) 0.18603 (13) 0.6610 (2) 0.0514 (5)
C1 0.4932 (3) 0.42768 (16) 0.7515 (3) 0.0607 (8)
C2 0.3719 (3) 0.4495 (2) 0.8403 (4) 0.0792 (10)
C3 0.2600 (4) 0.3822 (2) 0.8755 (4) 0.0826 (10)
C4 0.2661 (3) 0.2923 (2) 0.8220 (3) 0.0686 (9)
C4A 0.3895 (2) 0.26879 (16) 0.7301 (2) 0.0512 (7)
C5 0.3392 (3) 0.09825 (18) 0.6805 (4) 0.0791 (10)
C5A 0.5637 (3) 0.19791 (14) 0.5882 (2) 0.0471 (6)
C6 0.6360 (4) 0.12408 (16) 0.4995 (3) 0.0637 (9)
C7 0.7989 (3) 0.13870 (18) 0.4529 (3) 0.0669 (9)
C8 0.9072 (3) 0.1731 (2) 0.5724 (3) 0.0713 (9)
C9 0.9058 (3) 0.2786 (2) 0.6046 (3) 0.0647 (8)
C10 0.7621 (3) 0.33087 (14) 0.5528 (3) 0.0533 (6)
C10A 0.6154 (2) 0.28910 (14) 0.6081 (2) 0.0431 (5)
C10B 0.5048 (2) 0.33542 (14) 0.6960 (2) 0.0458 (6)
H1 0.56661 0.47293 0.72821 0.0728*
H2 0.36341 0.51021 0.87808 0.0950*
H3 0.17945 0.39907 0.93704 0.0989*
H4 0.19098 0.24819 0.84567 0.0823*
H5A 0.25845 0.10790 0.75052 0.1184*
H5B 0.29541 0.07936 0.58858 0.1184*
H5C 0.40722 0.04986 0.71507 0.1184*
H7A 0.83814 0.07958 0.41476 0.0803*
H7B 0.80020 0.18409 0.37351 0.0803*
H8A 0.88223 0.13988 0.66208 0.0856*
H8B 1.01113 0.15535 0.54543 0.0856*
H9A 0.91596 0.28753 0.70940 0.0776*
H9B 0.99487 0.30708 0.55857 0.0776*
H10A 0.76018 0.33072 0.44669 0.0640*
H10B 0.76828 0.39599 0.58476 0.0640*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O6 0.131 (2) 0.0782 (13) 0.133 (2) −0.0248 (14) 0.030 (2) −0.0505 (16)
N5 0.0472 (9) 0.0535 (9) 0.0534 (10) −0.0053 (7) −0.0045 (8) 0.0057 (8)
C1 0.0620 (13) 0.0556 (12) 0.0644 (14) 0.0153 (10) −0.0049 (12) −0.0035 (11)
C2 0.0837 (19) 0.0764 (16) 0.0774 (18) 0.0354 (15) 0.0030 (16) −0.0123 (16)
C3 0.0671 (15) 0.111 (2) 0.0696 (17) 0.0405 (18) 0.0133 (15) 0.0049 (17)
C4 0.0442 (12) 0.0964 (17) 0.0652 (15) 0.0115 (12) 0.0043 (11) 0.0162 (15)
C4A 0.0408 (10) 0.0643 (12) 0.0486 (12) 0.0048 (9) −0.0069 (9) 0.0089 (10)
C5 0.0732 (17) 0.0691 (14) 0.095 (2) −0.0234 (13) −0.0062 (17) 0.0152 (16)
C5A 0.0508 (11) 0.0484 (10) 0.0421 (10) 0.0017 (8) −0.0035 (9) 0.0048 (9)
C6 0.0855 (18) 0.0514 (12) 0.0541 (14) 0.0054 (11) −0.0011 (13) −0.0046 (10)
C7 0.0838 (18) 0.0654 (13) 0.0514 (13) 0.0252 (12) 0.0133 (13) 0.0021 (11)
C8 0.0639 (14) 0.0833 (17) 0.0668 (16) 0.0278 (13) 0.0048 (13) 0.0131 (15)
C9 0.0421 (11) 0.0857 (16) 0.0663 (15) 0.0022 (11) 0.0033 (11) 0.0069 (14)
C10 0.0538 (11) 0.0519 (9) 0.0542 (13) −0.0005 (9) 0.0045 (10) 0.0087 (9)
C10A 0.0436 (10) 0.0438 (8) 0.0418 (10) 0.0050 (7) −0.0036 (8) 0.0043 (8)
C10B 0.0421 (10) 0.0506 (10) 0.0448 (11) 0.0083 (7) −0.0055 (8) 0.0029 (8)

Geometric parameters (Å, °)

O6—C6 1.216 (4) C10A—C10B 1.415 (3)
N5—C4A 1.368 (3) C1—H1 0.9300
N5—C5 1.462 (3) C2—H2 0.9300
N5—C5A 1.388 (3) C3—H3 0.9300
C1—C2 1.367 (4) C4—H4 0.9300
C1—C10B 1.407 (3) C5—H5A 0.9600
C2—C3 1.401 (4) C5—H5B 0.9600
C3—C4 1.366 (4) C5—H5C 0.9600
C4—C4A 1.403 (3) C7—H7A 0.9700
C4A—C10B 1.413 (3) C7—H7B 0.9700
C5A—C6 1.466 (3) C8—H8A 0.9700
C5A—C10A 1.381 (3) C8—H8B 0.9700
C6—C7 1.494 (4) C9—H9A 0.9700
C7—C8 1.523 (4) C9—H9B 0.9700
C8—C9 1.525 (4) C10—H10A 0.9700
C9—C10 1.529 (4) C10—H10B 0.9700
C10—C10A 1.495 (3)
C4A—N5—C5 123.97 (19) C2—C3—H3 119.00
C4A—N5—C5A 108.26 (17) C4—C3—H3 119.00
C5—N5—C5A 127.26 (19) C3—C4—H4 121.00
C2—C1—C10B 118.7 (2) C4A—C4—H4 121.00
C1—C2—C3 121.3 (3) N5—C5—H5A 109.00
C2—C3—C4 121.8 (3) N5—C5—H5B 109.00
C3—C4—C4A 117.8 (3) N5—C5—H5C 110.00
N5—C4A—C4 130.8 (2) H5A—C5—H5B 109.00
N5—C4A—C10B 108.16 (16) H5A—C5—H5C 109.00
C4—C4A—C10B 121.1 (2) H5B—C5—H5C 109.00
N5—C5A—C6 123.5 (2) C6—C7—H7A 108.00
N5—C5A—C10A 109.49 (18) C6—C7—H7B 108.00
C6—C5A—C10A 127.0 (2) C8—C7—H7A 108.00
O6—C6—C5A 122.2 (3) C8—C7—H7B 108.00
O6—C6—C7 120.1 (3) H7A—C7—H7B 107.00
C5A—C6—C7 117.7 (2) C7—C8—H8A 108.00
C6—C7—C8 115.3 (2) C7—C8—H8B 108.00
C7—C8—C9 116.6 (2) C9—C8—H8A 108.00
C8—C9—C10 115.0 (2) C9—C8—H8B 108.00
C9—C10—C10A 113.67 (19) H8A—C8—H8B 107.00
C5A—C10A—C10 127.19 (19) C8—C9—H9A 109.00
C5A—C10A—C10B 106.73 (17) C8—C9—H9B 109.00
C10—C10A—C10B 126.05 (18) C10—C9—H9A 108.00
C1—C10B—C4A 119.44 (18) C10—C9—H9B 108.00
C1—C10B—C10A 133.24 (19) H9A—C9—H9B 108.00
C4A—C10B—C10A 107.31 (17) C9—C10—H10A 109.00
C2—C1—H1 121.00 C9—C10—H10B 109.00
C10B—C1—H1 121.00 C10A—C10—H10A 109.00
C1—C2—H2 119.00 C10A—C10—H10B 109.00
C3—C2—H2 119.00 H10A—C10—H10B 108.00
C5—N5—C4A—C4 −4.8 (4) N5—C5A—C6—O6 12.5 (4)
C5—N5—C4A—C10B 174.5 (2) N5—C5A—C6—C7 −167.6 (2)
C5A—N5—C4A—C4 −177.2 (2) C10A—C5A—C6—O6 −164.4 (3)
C5A—N5—C4A—C10B 2.2 (2) C10A—C5A—C6—C7 15.4 (4)
C4A—N5—C5A—C6 −178.7 (2) N5—C5A—C10A—C10 177.9 (2)
C4A—N5—C5A—C10A −1.3 (2) N5—C5A—C10A—C10B −0.1 (2)
C5—N5—C5A—C6 9.3 (4) C6—C5A—C10A—C10 −4.8 (4)
C5—N5—C5A—C10A −173.3 (2) C6—C5A—C10A—C10B 177.2 (2)
C10B—C1—C2—C3 −0.4 (5) O6—C6—C7—C8 −134.4 (3)
C2—C1—C10B—C4A 1.6 (3) C5A—C6—C7—C8 45.7 (3)
C2—C1—C10B—C10A −177.2 (2) C6—C7—C8—C9 −81.6 (3)
C1—C2—C3—C4 −0.6 (5) C7—C8—C9—C10 19.9 (3)
C2—C3—C4—C4A 0.3 (5) C8—C9—C10—C10A 54.1 (3)
C3—C4—C4A—N5 −179.7 (3) C9—C10—C10A—C5A −57.7 (3)
C3—C4—C4A—C10B 1.0 (4) C9—C10—C10A—C10B 119.9 (2)
N5—C4A—C10B—C1 178.60 (19) C5A—C10A—C10B—C1 −179.6 (2)
N5—C4A—C10B—C10A −2.3 (2) C5A—C10A—C10B—C4A 1.5 (2)
C4—C4A—C10B—C1 −2.0 (3) C10—C10A—C10B—C1 2.4 (4)
C4—C4A—C10B—C10A 177.16 (19) C10—C10A—C10B—C4A −176.58 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5032).

References

  1. Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, o2882. [DOI] [PMC free article] [PubMed]
  2. Bennasar, M.-L., Vidal, B. & Bosch, J. (1997). J. Org. Chem. 62, 3597–3609.
  3. Csomós, P., Fodor, L., Mándity, I. & Bernáth, G. (2007). Tetrahedron, 63, 4983–4989.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016229/hg5032sup1.cif

e-67-o1325-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016229/hg5032Isup2.hkl

e-67-o1325-Isup2.hkl (57.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016229/hg5032Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES