Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 14;67(Pt 6):o1395–o1396. doi: 10.1107/S1600536811017338

4-[4-(Diethyl­amino)­phen­yl]-N-methyl-3-nitro-4H-chromen-2-amine

J Muthukumaran a, A Parthiban b, P Manivel a, H Surya Prakash Rao b,, R Krishna a,*
PMCID: PMC3120544  PMID: 21754782

Abstract

In the title compound, C20H23N3O3, the dihydro­pyran ring adopts half-chair conformation. The chromene system makes a dihedral angle of 87.35 (5)° with the adjacent benzene ring. An intra­molecular N—H⋯O hydrogen bond generates an S(6) motif, which stabilizes the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds contribute to the stabilization of the packing.

Related literature

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Afanti­tis et al. (2006); Tang et al. (2007). For the structures of 4H-chromene derivatives, see: Muthukumaran et al. (2011); Gayathri et al. (2006); Bhaskaran et al. (2006). For ring puckering analysis, see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o1395-scheme1.jpg

Experimental

Crystal data

  • C20H23N3O3

  • M r = 353.41

  • Triclinic, Inline graphic

  • a = 8.9199 (11) Å

  • b = 10.4333 (12) Å

  • c = 11.6697 (8) Å

  • α = 65.100 (9)°

  • β = 82.388 (8)°

  • γ = 69.513 (11)°

  • V = 922.63 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.45 × 0.35 × 0.35 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.923, T max = 1.000

  • 17119 measured reflections

  • 3242 independent reflections

  • 2625 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.162

  • S = 1.05

  • 3242 reflections

  • 226 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017338/sj5141sup1.cif

e-67-o1395-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017338/sj5141Isup2.hkl

e-67-o1395-Isup2.hkl (159.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811017338/sj5141Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.96 2.596 (2) 129
C5—H5⋯O3i 0.93 2.52 3.325 (3) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

RK, JM and PM thank the Centre for Bioinformatics (Funded by the Department of Biotechnology and the Department of Information Technology, New Delhi, India), Pondicherry University for providing the computational facilities to carry out this work. AP thanks Pondicherry University for a Fellowship. PM also thanks the University Grants Commission (UGC) for a Fellowship. JM also thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF). HSP thanks the UGC for the Special Assistance Programme (SAP) and the Department of Science and Technology (DST) for the Fund for Improvement of Science and Technology Infrastructure in Universities and Higher Educational Institutions (FIST).

supplementary crystallographic information

Comment

4H-chromenes and their derivatives possess various biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, antidiabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai et al., 2006; Gabor,1988; Brooks,1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). 4-aryl-4H-chromenes are a new series of apoptosis inducers, which exhibit potent anticancer activity (Afantitis et al., 2006). Considering the importance of 4-aryl-4H-chromene derivatives, a single-crystal X-ray diffraction study on the title compound was carried out and analyzed.

Some 4H-chromene derivatives are already reported in the literature (Muthukumaran et al., 2011; Gayathri et al., 2006; Bhaskaran et al., 2006). The molecular structure of the title compound is shown in Fig. 1. From the puckering analysis (Cremer & Pople, 1975), the fused dihydropyran ring (O1/C1/C6/C7/C8/C9) of 4H-chromene system is very similar to half chair (H form) conformation with puckering parameters of Q = 0.253 (2) Å, θ = 103.2 (5) ° and Φ = 7.0 (5) °. In the title compound, the 4H-chromene system makes a dihedral angle of 87.35 (5)° with the adjacent phenyl ring. The intramolecular N1—H1···O2 interaction generates a graph-set motif S (6) (Bernstein et al., 1995) (Fig. 2) with a D···A bond distance of 2.596 (2) Å. The crystal packing (Fig. 3) is stabilized by weak intermolecular C—H···O interactions.

Experimental

To a vigorously stirred solution of N-methyl-N-[3-nitro-4-(methylsulfanyl)-4H-2-chromenyl]amine (0.5 g, 2 mmol) in ethanol (15 ml), N, N-diethylaminobenzene (0.33 g, 2.2 mmol) was added and the resulting solution was refluxed for 12 h by which time the reaction was complete (TLC; hexane: EtOAc, 6:4). The reaction mixture was cooled to room temperature and kept aside for 3 h. The solid, which separated was filtered to obtain 0.59 g of N2-methyl-4-[4-(diethylamino)phenyl]-3-nitro-4H-2-chromenamine in 92% yield as colorless solid; mp 201 °C. Rf 0.4 (hexane: EtOAc, 6:4). A sample suitable for single crystal X-ray analysis was obtained by recrystallization from a mixture of dichloromethane and hexane (3:1).

Refinement

All hydrogen atoms were placed in calculated positions, with N—H=0.86 and C—H=0.93 and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

: The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

: A view of intramolecular motif S (6) formed by N—H···O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the Hydrogen bond are shown in blue dashed lines.

Fig. 3.

Fig. 3.

: The crystal packing of (I) showing intermolecular interactions as dashed lines.

Crystal data

C20H23N3O3 Z = 2
Mr = 353.41 F(000) = 376
Triclinic, P1 Dx = 1.272 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.9199 (11) Å Cell parameters from 8151 reflections
b = 10.4333 (12) Å θ = 2.7–29.3°
c = 11.6697 (8) Å µ = 0.09 mm1
α = 65.100 (9)° T = 293 K
β = 82.388 (8)° Block, yellow
γ = 69.513 (11)° 0.45 × 0.35 × 0.35 mm
V = 922.63 (19) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 3242 independent reflections
Radiation source: fine-focus sealed tube 2625 reflections with I > 2σ(I)
graphite Rint = 0.036
Detector resolution: 15.9821 pixels mm-1 θmax = 25.0°, θmin = 2.7°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −12→12
Tmin = 0.923, Tmax = 1.000 l = −13→13
17119 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.5254P] where P = (Fo2 + 2Fc2)/3
3242 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.52 e Å3
3 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.42869 (17) 0.68371 (16) 0.57975 (15) 0.0483 (4)
N1 0.3634 (2) 0.9167 (2) 0.43607 (18) 0.0466 (5)
H1 0.3882 0.9910 0.3790 0.056*
N2 0.6967 (2) 0.8783 (2) 0.38082 (17) 0.0474 (5)
C8 0.6437 (2) 0.7689 (2) 0.47334 (19) 0.0395 (5)
C7 0.7689 (2) 0.6305 (2) 0.55805 (19) 0.0391 (5)
H7 0.8571 0.6001 0.5053 0.047*
O3 0.84395 (19) 0.8532 (2) 0.36670 (17) 0.0620 (5)
C9 0.4810 (2) 0.7932 (2) 0.4932 (2) 0.0397 (5)
O2 0.5993 (2) 1.00198 (19) 0.31188 (17) 0.0658 (5)
C6 0.6982 (2) 0.5058 (2) 0.6218 (2) 0.0399 (5)
C10 0.8361 (2) 0.6586 (2) 0.65559 (19) 0.0385 (5)
C15 0.9923 (2) 0.6551 (2) 0.6541 (2) 0.0425 (5)
H15 1.0599 0.6340 0.5919 0.051*
C1 0.5350 (3) 0.5370 (2) 0.6324 (2) 0.0424 (5)
C13 0.9558 (3) 0.7122 (3) 0.8384 (2) 0.0491 (6)
C5 0.7938 (3) 0.3569 (3) 0.6773 (2) 0.0484 (6)
H5 0.9044 0.3321 0.6705 0.058*
C11 0.7400 (3) 0.6897 (3) 0.7504 (2) 0.0482 (5)
H11 0.6339 0.6932 0.7536 0.058*
C14 1.0514 (3) 0.6821 (3) 0.7422 (2) 0.0478 (5)
H14 1.1570 0.6802 0.7373 0.057*
C12 0.7968 (3) 0.7153 (3) 0.8397 (2) 0.0544 (6)
H12 0.7288 0.7351 0.9022 0.065*
C20 0.1945 (3) 0.9377 (3) 0.4617 (3) 0.0563 (6)
H20A 0.1681 0.8589 0.4560 0.084*
H20B 0.1316 1.0323 0.4009 0.084*
H20C 0.1724 0.9357 0.5451 0.084*
N3 1.0125 (3) 0.7401 (3) 0.9267 (2) 0.0778 (5)
C2 0.4655 (3) 0.4275 (3) 0.6966 (2) 0.0527 (6)
H2 0.3548 0.4520 0.7021 0.063*
C3 0.5633 (3) 0.2813 (3) 0.7523 (3) 0.0602 (7)
H3 0.5187 0.2061 0.7971 0.072*
C4 0.7278 (3) 0.2458 (3) 0.7418 (2) 0.0584 (6)
H4 0.7935 0.1467 0.7784 0.070*
C18 1.1609 (4) 0.7810 (4) 0.9042 (3) 0.0778 (5)
H18A 1.1720 0.8322 0.8140 0.093*
H18B 1.1496 0.8506 0.9421 0.093*
C16 0.9352 (4) 0.7188 (4) 1.0492 (3) 0.0778 (5)
H16A 0.8790 0.6478 1.0685 0.093*
H16B 1.0165 0.6772 1.1144 0.093*
C17 0.8226 (6) 0.8584 (5) 1.0503 (5) 0.1329 (17)
H17A 0.8774 0.9296 1.0298 0.199*
H17B 0.7774 0.8405 1.1327 0.199*
H17C 0.7387 0.8971 0.9890 0.199*
C19 1.3069 (5) 0.6543 (5) 0.9545 (4) 0.1141 (14)
H19A 1.2959 0.6005 1.0433 0.171*
H19B 1.3960 0.6901 0.9411 0.171*
H19C 1.3248 0.5891 0.9120 0.171*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0341 (8) 0.0406 (8) 0.0607 (10) −0.0087 (6) 0.0025 (7) −0.0150 (7)
N1 0.0364 (9) 0.0393 (10) 0.0554 (11) −0.0078 (8) −0.0005 (8) −0.0145 (9)
N2 0.0400 (10) 0.0525 (11) 0.0445 (11) −0.0133 (9) 0.0030 (8) −0.0168 (9)
C8 0.0367 (11) 0.0437 (11) 0.0381 (11) −0.0115 (9) 0.0013 (9) −0.0179 (9)
C7 0.0316 (10) 0.0437 (11) 0.0406 (11) −0.0070 (8) 0.0014 (8) −0.0202 (9)
O3 0.0406 (9) 0.0702 (11) 0.0623 (11) −0.0191 (8) 0.0105 (8) −0.0170 (9)
C9 0.0386 (11) 0.0401 (11) 0.0411 (11) −0.0103 (9) −0.0002 (9) −0.0187 (9)
O2 0.0520 (10) 0.0530 (10) 0.0628 (11) −0.0111 (8) −0.0009 (8) −0.0005 (9)
C6 0.0407 (11) 0.0436 (12) 0.0386 (11) −0.0100 (9) −0.0032 (9) −0.0214 (9)
C10 0.0361 (10) 0.0386 (11) 0.0383 (11) −0.0094 (8) −0.0008 (8) −0.0150 (9)
C15 0.0344 (11) 0.0470 (12) 0.0442 (12) −0.0094 (9) 0.0013 (9) −0.0199 (10)
C1 0.0418 (11) 0.0393 (11) 0.0451 (12) −0.0090 (9) −0.0023 (9) −0.0186 (10)
C13 0.0539 (13) 0.0516 (13) 0.0449 (13) −0.0201 (11) −0.0051 (10) −0.0184 (11)
C5 0.0455 (12) 0.0486 (13) 0.0494 (13) −0.0057 (10) −0.0061 (10) −0.0241 (11)
C11 0.0381 (11) 0.0626 (14) 0.0517 (13) −0.0198 (10) 0.0060 (10) −0.0292 (11)
C14 0.0371 (11) 0.0543 (13) 0.0515 (13) −0.0157 (10) −0.0025 (10) −0.0192 (11)
C12 0.0543 (14) 0.0726 (16) 0.0496 (14) −0.0261 (12) 0.0123 (11) −0.0359 (13)
C20 0.0363 (12) 0.0499 (13) 0.0732 (17) −0.0054 (10) 0.0002 (11) −0.0229 (12)
N3 0.0905 (12) 0.1014 (13) 0.0670 (10) −0.0482 (10) −0.0023 (9) −0.0428 (10)
C2 0.0494 (13) 0.0516 (14) 0.0595 (15) −0.0204 (11) 0.0012 (11) −0.0216 (12)
C3 0.0729 (17) 0.0459 (14) 0.0617 (16) −0.0251 (12) −0.0033 (13) −0.0158 (12)
C4 0.0681 (17) 0.0405 (13) 0.0597 (15) −0.0073 (11) −0.0104 (12) −0.0191 (11)
C18 0.0905 (12) 0.1014 (13) 0.0670 (10) −0.0482 (10) −0.0023 (9) −0.0428 (10)
C16 0.0905 (12) 0.1014 (13) 0.0670 (10) −0.0482 (10) −0.0023 (9) −0.0428 (10)
C17 0.172 (5) 0.129 (4) 0.145 (4) −0.071 (3) 0.028 (3) −0.088 (3)
C19 0.094 (3) 0.151 (4) 0.098 (3) −0.039 (3) −0.022 (2) −0.044 (3)

Geometric parameters (Å, °)

O1—C9 1.349 (3) C11—C12 1.373 (3)
O1—C1 1.402 (2) C11—H11 0.9300
N1—C9 1.312 (3) C14—H14 0.9300
N1—C20 1.453 (3) C12—H12 0.9300
N1—H1 0.8600 C20—H20A 0.9600
N2—O3 1.249 (2) C20—H20B 0.9600
N2—O2 1.262 (2) C20—H20C 0.9600
N2—C8 1.377 (3) N3—C16 1.465 (4)
C8—C9 1.388 (3) N3—C18 1.487 (4)
C8—C7 1.507 (3) C2—C3 1.376 (3)
C7—C6 1.510 (3) C2—H2 0.9300
C7—C10 1.525 (3) C3—C4 1.384 (4)
C7—H7 0.9800 C3—H3 0.9300
O3—N2 1.249 (2) C4—H4 0.9300
O2—N2 1.262 (2) C18—C19 1.460 (5)
C6—C1 1.377 (3) C18—H18A 0.9700
C6—C5 1.390 (3) C18—H18B 0.9700
C10—C15 1.380 (3) C16—C17 1.455 (5)
C10—C11 1.385 (3) C16—H16A 0.9700
C15—C14 1.380 (3) C16—H16B 0.9700
C15—H15 0.9300 C17—H17A 0.9600
C1—C2 1.380 (3) C17—H17B 0.9600
C13—N3 1.378 (3) C17—H17C 0.9600
C13—C14 1.393 (3) C19—H19A 0.9600
C13—C12 1.406 (3) C19—H19B 0.9600
C5—C4 1.372 (4) C19—H19C 0.9600
C5—H5 0.9300
C9—O1—C1 119.79 (16) C11—C12—H12 119.4
C9—N1—C20 125.1 (2) C13—C12—H12 119.4
C9—N1—H1 117.5 N1—C20—H20A 109.5
C20—N1—H1 117.5 N1—C20—H20B 109.5
O3—N2—O2 120.32 (18) H20A—C20—H20B 109.5
O3—N2—O2 120.32 (18) N1—C20—H20C 109.5
O3—N2—C8 118.58 (18) H20A—C20—H20C 109.5
O2—N2—C8 121.10 (18) H20B—C20—H20C 109.5
N2—C8—C9 120.35 (19) C13—N3—C16 120.7 (2)
N2—C8—C7 117.15 (17) C13—N3—C18 120.8 (2)
C9—C8—C7 122.25 (19) C16—N3—C18 118.3 (2)
C6—C7—C8 109.37 (17) C3—C2—C1 118.6 (2)
C6—C7—C10 110.83 (17) C3—C2—H2 120.7
C8—C7—C10 111.95 (17) C1—C2—H2 120.7
C6—C7—H7 108.2 C2—C3—C4 120.2 (2)
C10—C7—H7 108.2 C2—C3—H3 119.9
N1—C9—O1 112.50 (18) C4—C3—H3 119.9
N1—C9—C8 127.1 (2) C5—C4—C3 119.9 (2)
O1—C9—C8 120.41 (18) C5—C4—H4 120.0
C1—C6—C5 117.4 (2) C3—C4—H4 120.0
C1—C6—C7 120.57 (18) C19—C18—N3 114.4 (3)
C5—C6—C7 121.92 (19) C19—C18—H18A 108.7
C15—C10—C11 117.06 (19) N3—C18—H18A 108.7
C15—C10—C7 122.49 (18) C19—C18—H18B 108.7
C11—C10—C7 120.45 (18) N3—C18—H18B 108.7
C14—C15—C10 122.0 (2) H18A—C18—H18B 107.6
C14—C15—H15 119.0 C17—C16—N3 112.0 (3)
C10—C15—H15 119.0 C17—C16—H16A 109.2
C6—C1—C2 122.6 (2) N3—C16—H16A 109.2
C6—C1—O1 121.69 (19) C17—C16—H16B 109.2
C2—C1—O1 115.70 (19) N3—C16—H16B 109.2
N3—C13—C14 122.1 (2) H16A—C16—H16B 107.9
N3—C13—C12 121.4 (2) C16—C17—H17A 109.5
C14—C13—C12 116.5 (2) C16—C17—H17B 109.5
C4—C5—C6 121.2 (2) H17A—C17—H17B 109.5
C4—C5—H5 119.4 C16—C17—H17C 109.5
C6—C5—H5 119.4 H17A—C17—H17C 109.5
C12—C11—C10 121.9 (2) H17B—C17—H17C 109.5
C12—C11—H11 119.0 C18—C19—H19A 109.5
C10—C11—H11 119.0 C18—C19—H19B 109.5
C15—C14—C13 121.3 (2) H19A—C19—H19B 109.5
C15—C14—H14 119.3 C18—C19—H19C 109.5
C13—C14—H14 119.3 H19A—C19—H19C 109.5
C11—C12—C13 121.2 (2) H19B—C19—H19C 109.5
O3—N2—C8—N2 0(17) C8—C7—C6—C5 162.23 (19)
O2—N2—C8—N2 0(100) C10—C7—C6—C5 −73.9 (2)
O2—N2—C8—N2 0(100) C6—C7—C10—C15 124.8 (2)
N2—N2—C8—C9 0.00 (11) C8—C7—C10—C15 −112.8 (2)
O3—N2—C8—C9 179.15 (19) C6—C7—C10—C11 −55.4 (3)
O2—N2—C8—C9 −0.4 (3) C8—C7—C10—C11 67.0 (3)
O2—N2—C8—C9 −0.4 (3) C11—C10—C15—C14 −0.4 (3)
N2—N2—C8—C7 0.00 (19) C7—C10—C15—C14 179.4 (2)
O3—N2—C8—C7 4.7 (3) C5—C6—C1—C2 1.0 (3)
O2—N2—C8—C7 −174.88 (19) C7—C6—C1—C2 −175.9 (2)
O2—N2—C8—C7 −174.88 (19) C5—C6—C1—O1 179.92 (18)
N2—C8—C7—C6 −161.30 (17) C7—C6—C1—O1 3.0 (3)
N2—C8—C7—C6 −161.30 (17) C9—O1—C1—C6 15.4 (3)
C9—C8—C7—C6 24.4 (3) C9—O1—C1—C2 −165.57 (19)
N2—C8—C7—C10 75.5 (2) C1—C6—C5—C4 −1.0 (3)
N2—C8—C7—C10 75.5 (2) C7—C6—C5—C4 175.8 (2)
C9—C8—C7—C10 −98.9 (2) C15—C10—C11—C12 −0.3 (3)
O2—N2—O3—N2 0(39) C7—C10—C11—C12 179.9 (2)
O2—N2—O3—N2 0(39) C10—C15—C14—C13 1.0 (3)
C8—N2—O3—N2 0(100) N3—C13—C14—C15 −179.6 (2)
C20—N1—C9—O1 0.6 (3) C12—C13—C14—C15 −0.8 (3)
C20—N1—C9—C8 −178.9 (2) C10—C11—C12—C13 0.4 (4)
C1—O1—C9—N1 168.16 (18) N3—C13—C12—C11 179.0 (2)
C1—O1—C9—C8 −12.3 (3) C14—C13—C12—C11 0.1 (4)
N2—C8—C9—N1 −3.7 (3) C14—C13—N3—C16 −158.1 (3)
N2—C8—C9—N1 −3.7 (3) C12—C13—N3—C16 23.1 (4)
C7—C8—C9—N1 170.5 (2) C14—C13—N3—C18 17.1 (4)
N2—C8—C9—O1 176.92 (18) C12—C13—N3—C18 −161.7 (3)
N2—C8—C9—O1 176.92 (18) C6—C1—C2—C3 0.0 (4)
C7—C8—C9—O1 −8.9 (3) O1—C1—C2—C3 −179.0 (2)
N2—N2—O2—O2 0.0 C1—C2—C3—C4 −1.0 (4)
O3—N2—O2—O2 0.0 (2) C6—C5—C4—C3 0.1 (4)
C8—N2—O2—O2 0.00 (11) C2—C3—C4—C5 1.0 (4)
O3—N2—O2—N2 0(10) C13—N3—C18—C19 −92.4 (4)
O2—N2—O2—N2 0(100) C16—N3—C18—C19 82.9 (4)
C8—N2—O2—N2 0(100) C13—N3—C16—C17 −97.1 (4)
C8—C7—C6—C1 −21.0 (3) C18—N3—C16—C17 87.6 (4)
C10—C7—C6—C1 102.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 1.96 2.596 (2) 129
C5—H5···O3i 0.93 2.52 3.325 (3) 144

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5141).

References

  1. Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P. A., Markopoulosd, J. & Igglessi-Markopoulou, O. (2006). Bioorg. Med. Chem. 14, 6686–6694. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188–o190.
  4. Brooks, G. T. (1998). Pestic. Sci. 22, 41–50.
  5. Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101. [DOI] [PubMed]
  6. Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.
  7. Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644. [DOI] [PubMed]
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.
  11. Gayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961–o1963.
  12. Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  13. Muthukumaran, J., Parthiban, A., Manivel, P., Rao, H. S. P. & Krishna, R. (2011). Acta Cryst. E67, o1276–o1277. [DOI] [PMC free article] [PubMed]
  14. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  18. Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017338/sj5141sup1.cif

e-67-o1395-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017338/sj5141Isup2.hkl

e-67-o1395-Isup2.hkl (159.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811017338/sj5141Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES