Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 25;67(Pt 6):o1500. doi: 10.1107/S1600536811018770

4-Methyl-N-(2-methyl­phen­yl)benzamide

Vinola Z Rodrigues a, Marek Fronc b, B Thimme Gowda a,*, Jozef Kožíšek b
PMCID: PMC3120561  PMID: 21754867

Abstract

The asymmetric unit of the title compound, C15H15NO, contains two independent mol­ecules, which differ in the dihedral angle between the aromatic rings [48.98 (9) and 57.48 (8)°]. The methyl groups in para positions are disordered over two equally occupied positions. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds which link the mol­ecules into chains running along the b axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003). For our study of the effect of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008, 2009); Saeed et al. (2010).graphic file with name e-67-o1500-scheme1.jpg

Experimental

Crystal data

  • C15H15NO

  • M r = 225.28

  • Triclinic, Inline graphic

  • a = 7.2964 (6) Å

  • b = 9.9075 (5) Å

  • c = 18.1347 (13) Å

  • α = 88.331 (5)°

  • β = 82.892 (6)°

  • γ = 79.558 (5)°

  • V = 1279.29 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.88 × 0.09 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] T min = 0.968, T max = 0.996

  • 18269 measured reflections

  • 4354 independent reflections

  • 1602 reflections with I > 2σ(I)

  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.097

  • S = 0.74

  • 4354 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018770/bt5550sup1.cif

e-67-o1500-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018770/bt5550Isup2.hkl

e-67-o1500-Isup2.hkl (213.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018770/bt5550Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.05 2.878 (2) 163
N2—H2A⋯O1i 0.86 2.05 2.883 (2) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

MF and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

The structural aspects of N-aryl amides are of interest due to their chemical and biological importance (Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2008, 2009; Saeed et al., 2010). In the present work, as part of a study of the substituent effects on the structures of benzanilides (Gowda, et al., 2008, 2009), the structure of 4-methyl-N-(2-methylphenyl)benzamide (I) has been determined (Fig.1). The asymmetric unit of (I) contains two independent molecules. In the crystal, the ortho-methyl substituent in the anilino ring is positioned syn to the N–H bond in one of the molecules and anti in the other molecule. Further, the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other in both the molecules, similar to that observed in 2-methyl-N-(4-methylphenyl)benzamide (II)(Gowda et al., 2008) and 4-methyl-N-(2,6-dimethylphenyl)benzamide (III) (Gowda et al., 2009) and, with similar bond parameters.

The central amide group –NHCO– is tilted to the anilino ring with the C2—C1—N1—C8 and C6—C1—N1—C8 torsion angles of -118.2 (3)° and 63.9 (3)° in molecule 1, and the C17—C16—N2—C23 and C21—C16—N2—C23 torsion angles of -86.8 (3)° and 97.6 (3)° in molecule 2, while the C10—C9—C8—N1 and C14—C9—C8—N1 torsion angles in molecule 1, and and the C25—C24—C23—N2 and C29—C24—C23—N2 torsion angles in molecule 2 are -13.4 (4)° and 171.7 (2)°, and -150.4 (2)° and 27.9 (4)°, respectively.

The packing of molecules linked by N—H···O hydrogen bonds into infinite chains is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. needle-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl). The methyl groups in p-position of the aromatic ring are disordered over two equally occupied positions rotated with respect to each other by 60°.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.

Crystal data

C15H15NO Z = 4
Mr = 225.28 F(000) = 480
Triclinic, P1 Dx = 1.170 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2964 (6) Å Cell parameters from 2440 reflections
b = 9.9075 (5) Å θ = 3.5–29.3°
c = 18.1347 (13) Å µ = 0.07 mm1
α = 88.331 (5)° T = 293 K
β = 82.892 (6)° Needle, colorless
γ = 79.558 (5)° 0.88 × 0.09 × 0.06 mm
V = 1279.29 (15) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector 4354 independent reflections
Radiation source: fine-focus sealed tube 1602 reflections with I > 2σ(I)
graphite Rint = 0.088
ω scans θmax = 24.7°, θmin = 4.1°
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] h = −8→8
Tmin = 0.968, Tmax = 0.996 k = −11→11
18269 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 0.74 w = 1/[σ2(Fo2) + (0.0367P)2] where P = (Fo2 + 2Fc2)/3
4354 reflections (Δ/σ)max < 0.001
311 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.11 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.3561 (3) 0.83584 (15) 0.23183 (11) 0.0969 (7)
N1 0.3243 (3) 0.62248 (17) 0.26640 (11) 0.0687 (7)
H1A 0.3695 0.5366 0.2607 0.082*
C1 0.1559 (5) 0.6596 (2) 0.31651 (18) 0.0614 (8)
C2 0.1579 (5) 0.6225 (2) 0.39053 (18) 0.0622 (8)
C3 −0.0084 (6) 0.6555 (3) 0.43740 (17) 0.0776 (9)
H3A −0.0099 0.6321 0.4875 0.093*
C4 −0.1703 (5) 0.7216 (3) 0.4122 (2) 0.0857 (10)
H4A −0.2804 0.7421 0.4447 0.103*
C5 −0.1687 (5) 0.7572 (3) 0.3388 (2) 0.0881 (10)
H5A −0.2783 0.8021 0.3212 0.106*
C6 −0.0056 (6) 0.7270 (3) 0.29071 (17) 0.0768 (9)
H6A −0.0048 0.7522 0.2409 0.092*
C7 0.3332 (5) 0.5461 (3) 0.41909 (16) 0.0928 (10)
H7A 0.3634 0.4553 0.3987 0.139*
H7B 0.3129 0.5403 0.4723 0.139*
H7C 0.4352 0.5940 0.4044 0.139*
C8 0.4170 (4) 0.7118 (2) 0.22826 (14) 0.0648 (8)
C9 0.5994 (4) 0.6581 (2) 0.18350 (14) 0.0590 (7)
C10 0.6996 (5) 0.5260 (2) 0.18947 (15) 0.0772 (9)
H10A 0.6467 0.4619 0.2194 0.093*
C11 0.8757 (5) 0.4888 (3) 0.15171 (16) 0.0832 (9)
H11A 0.9396 0.3994 0.1565 0.100*
C12 0.9607 (5) 0.5800 (3) 0.10686 (15) 0.0772 (9)
C13 0.8592 (5) 0.7099 (3) 0.09924 (15) 0.0803 (10)
H13A 0.9114 0.7729 0.0682 0.096*
C14 0.6840 (5) 0.7481 (2) 0.13623 (15) 0.0736 (9)
H14A 0.6192 0.8367 0.1297 0.088*
C15 1.1607 (5) 0.5405 (3) 0.06924 (18) 0.1129 (12)
H15A 1.2388 0.4932 0.1042 0.135* 0.50
H15B 1.2072 0.6218 0.0518 0.135* 0.50
H15C 1.1624 0.4816 0.0280 0.135* 0.50
H15D 1.2459 0.5820 0.0963 0.135* 0.50
H15E 1.1741 0.5717 0.0194 0.135* 0.50
H15F 1.2029 0.4415 0.0714 0.135* 0.50
O2 0.3997 (3) 0.32712 (14) 0.26391 (11) 0.0970 (7)
N2 0.4584 (3) 0.10245 (17) 0.23914 (11) 0.0622 (6)
H2A 0.4231 0.0247 0.2478 0.075*
C16 0.6234 (4) 0.1063 (2) 0.18894 (17) 0.0541 (7)
C17 0.6124 (4) 0.1340 (2) 0.11454 (19) 0.0665 (8)
C18 0.7779 (6) 0.1290 (3) 0.06697 (17) 0.0799 (9)
H18A 0.7723 0.1486 0.0168 0.096*
C19 0.9474 (5) 0.0960 (3) 0.0923 (2) 0.0806 (9)
H19A 1.0564 0.0931 0.0595 0.097*
C20 0.9594 (5) 0.0668 (3) 0.1660 (2) 0.0866 (9)
H20A 1.0757 0.0432 0.1834 0.104*
C21 0.7952 (5) 0.0732 (2) 0.21414 (16) 0.0737 (9)
H21A 0.8018 0.0546 0.2644 0.088*
C22 0.4253 (5) 0.1644 (4) 0.08421 (19) 0.1311 (13)
H22A 0.3592 0.0897 0.0962 0.197*
H22B 0.4455 0.1755 0.0312 0.197*
H22C 0.3524 0.2473 0.1060 0.197*
C23 0.3531 (4) 0.2138 (2) 0.27375 (14) 0.0615 (8)
C24 0.1817 (4) 0.1941 (2) 0.32233 (13) 0.0551 (7)
C25 0.0317 (4) 0.3016 (2) 0.33069 (14) 0.0659 (8)
H25A 0.0424 0.3857 0.3080 0.079*
C26 −0.1335 (4) 0.2853 (2) 0.37224 (15) 0.0718 (8)
H26A −0.2340 0.3584 0.3766 0.086*
C27 −0.1537 (4) 0.1625 (3) 0.40784 (14) 0.0667 (8)
C28 −0.0014 (4) 0.0571 (2) 0.40096 (14) 0.0663 (8)
H28A −0.0101 −0.0255 0.4256 0.080*
C29 0.1638 (4) 0.0716 (2) 0.35820 (13) 0.0618 (8)
H29A 0.2639 −0.0017 0.3535 0.074*
C30 −0.3368 (4) 0.1441 (3) 0.45296 (17) 0.1005 (10)
H30A −0.3499 0.1904 0.4996 0.121* 0.50
H30B −0.3368 0.0481 0.4618 0.121* 0.50
H30C −0.4397 0.1821 0.4260 0.121* 0.50
H30D −0.3245 0.0952 0.4985 0.121* 0.50
H30E −0.4078 0.0901 0.4238 0.121* 0.50
H30F −0.4215 0.2321 0.4626 0.121* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0967 (17) 0.0388 (9) 0.1473 (19) −0.0146 (10) 0.0214 (13) −0.0057 (10)
N1 0.092 (2) 0.0376 (11) 0.0721 (16) −0.0128 (12) 0.0087 (15) −0.0023 (11)
C1 0.072 (3) 0.0414 (14) 0.071 (2) −0.0138 (16) −0.001 (2) −0.0075 (14)
C2 0.075 (3) 0.0501 (14) 0.062 (2) −0.0146 (15) −0.006 (2) −0.0012 (14)
C3 0.085 (3) 0.0691 (18) 0.077 (2) −0.0195 (18) 0.007 (2) −0.0019 (16)
C4 0.079 (3) 0.078 (2) 0.099 (3) −0.024 (2) 0.013 (2) −0.0113 (19)
C5 0.067 (3) 0.082 (2) 0.117 (3) −0.0108 (17) −0.018 (3) −0.012 (2)
C6 0.088 (3) 0.0662 (17) 0.078 (2) −0.0120 (18) −0.018 (2) −0.0020 (16)
C7 0.097 (3) 0.0908 (19) 0.088 (2) −0.0066 (19) −0.018 (2) 0.0073 (16)
C8 0.084 (2) 0.0408 (14) 0.071 (2) −0.0161 (16) −0.0057 (17) −0.0070 (14)
C9 0.080 (2) 0.0410 (14) 0.0574 (18) −0.0154 (15) −0.0075 (16) −0.0022 (13)
C10 0.091 (3) 0.0512 (16) 0.086 (2) −0.0196 (17) 0.008 (2) 0.0036 (14)
C11 0.092 (3) 0.0567 (16) 0.094 (2) −0.0100 (17) 0.012 (2) −0.0026 (16)
C12 0.090 (3) 0.0732 (19) 0.067 (2) −0.0194 (19) 0.0062 (19) −0.0126 (16)
C13 0.105 (3) 0.0621 (18) 0.071 (2) −0.0251 (18) 0.014 (2) −0.0009 (15)
C14 0.104 (3) 0.0491 (15) 0.066 (2) −0.0159 (17) 0.0013 (19) 0.0037 (14)
C15 0.113 (3) 0.106 (2) 0.112 (3) −0.019 (2) 0.019 (3) −0.0098 (19)
O2 0.1053 (17) 0.0411 (9) 0.1356 (17) −0.0257 (10) 0.0425 (13) −0.0120 (10)
N2 0.0637 (17) 0.0417 (11) 0.0764 (16) −0.0172 (11) 0.0228 (14) −0.0052 (10)
C16 0.057 (2) 0.0420 (13) 0.063 (2) −0.0137 (14) 0.0015 (19) −0.0012 (13)
C17 0.052 (2) 0.0700 (16) 0.074 (2) −0.0101 (14) −0.001 (2) 0.0147 (15)
C18 0.075 (3) 0.093 (2) 0.071 (2) −0.0203 (18) 0.000 (2) 0.0133 (15)
C19 0.070 (3) 0.094 (2) 0.078 (3) −0.0254 (19) 0.009 (2) −0.0146 (17)
C20 0.060 (3) 0.117 (2) 0.086 (3) −0.0205 (18) −0.012 (2) −0.0166 (19)
C21 0.074 (3) 0.0844 (19) 0.064 (2) −0.0216 (18) −0.002 (2) −0.0082 (15)
C22 0.074 (3) 0.192 (4) 0.116 (3) 0.002 (2) −0.012 (3) 0.040 (2)
C23 0.069 (2) 0.0423 (14) 0.0704 (19) −0.0121 (14) 0.0078 (16) −0.0048 (13)
C24 0.063 (2) 0.0440 (14) 0.0565 (18) −0.0142 (14) 0.0097 (15) −0.0070 (12)
C25 0.068 (2) 0.0494 (15) 0.076 (2) −0.0110 (16) 0.0076 (18) −0.0050 (13)
C26 0.066 (2) 0.0655 (17) 0.078 (2) −0.0011 (15) 0.0018 (18) −0.0082 (15)
C27 0.068 (2) 0.0765 (18) 0.0561 (19) −0.0220 (18) 0.0075 (17) −0.0103 (15)
C28 0.074 (2) 0.0588 (16) 0.064 (2) −0.0177 (16) 0.0077 (17) −0.0007 (13)
C29 0.070 (2) 0.0498 (15) 0.0624 (19) −0.0120 (13) 0.0097 (16) −0.0049 (13)
C30 0.084 (3) 0.111 (2) 0.102 (3) −0.0272 (19) 0.022 (2) −0.0060 (17)

Geometric parameters (Å, °)

O1—C8 1.229 (2) O2—C23 1.233 (2)
N1—C8 1.336 (3) N2—C23 1.347 (3)
N1—C1 1.432 (3) N2—C16 1.423 (3)
N1—H1A 0.8596 N2—H2A 0.8594
C1—C6 1.374 (4) C16—C21 1.368 (4)
C1—C2 1.383 (3) C16—C17 1.378 (3)
C2—C3 1.385 (4) C17—C18 1.389 (4)
C2—C7 1.506 (4) C17—C22 1.511 (4)
C3—C4 1.367 (4) C18—C19 1.354 (4)
C3—H3A 0.9300 C18—H18A 0.9300
C4—C5 1.367 (4) C19—C20 1.369 (4)
C4—H4A 0.9300 C19—H19A 0.9300
C5—C6 1.376 (4) C20—C21 1.385 (4)
C5—H5A 0.9300 C20—H20A 0.9300
C6—H6A 0.9300 C21—H21A 0.9300
C7—H7A 0.9600 C22—H22A 0.9600
C7—H7B 0.9600 C22—H22B 0.9600
C7—H7C 0.9600 C22—H22C 0.9600
C8—C9 1.488 (3) C23—C24 1.477 (3)
C9—C10 1.387 (3) C24—C25 1.379 (3)
C9—C14 1.391 (3) C24—C29 1.380 (3)
C10—C11 1.372 (3) C25—C26 1.373 (3)
C10—H10A 0.9300 C25—H25A 0.9300
C11—C12 1.378 (3) C26—C27 1.384 (3)
C11—H11A 0.9300 C26—H26A 0.9300
C12—C13 1.375 (3) C27—C28 1.376 (3)
C12—C15 1.520 (4) C27—C30 1.515 (3)
C13—C14 1.362 (3) C28—C29 1.378 (3)
C13—H13A 0.9300 C28—H28A 0.9300
C14—H14A 0.9300 C29—H29A 0.9300
C15—H15A 0.9600 C30—H30A 0.9600
C15—H15B 0.9600 C30—H30B 0.9600
C15—H15C 0.9600 C30—H30C 0.9600
C15—H15D 0.9887 C30—H30D 0.9501
C15—H15E 0.9457 C30—H30E 1.0098
C15—H15F 0.9744 C30—H30F 0.9793
C8—N1—C1 124.69 (19) C23—N2—C16 123.84 (18)
C8—N1—H1A 117.6 C23—N2—H2A 117.9
C1—N1—H1A 117.7 C16—N2—H2A 118.3
C6—C1—C2 120.9 (3) C21—C16—C17 119.8 (3)
C6—C1—N1 120.3 (3) C21—C16—N2 119.3 (3)
C2—C1—N1 118.7 (3) C17—C16—N2 120.7 (3)
C1—C2—C3 117.7 (3) C16—C17—C18 118.6 (3)
C1—C2—C7 121.3 (3) C16—C17—C22 121.2 (3)
C3—C2—C7 121.0 (3) C18—C17—C22 120.2 (3)
C4—C3—C2 121.9 (3) C19—C18—C17 121.2 (3)
C4—C3—H3A 119.0 C19—C18—H18A 119.4
C2—C3—H3A 119.0 C17—C18—H18A 119.4
C3—C4—C5 119.3 (3) C18—C19—C20 120.5 (3)
C3—C4—H4A 120.3 C18—C19—H19A 119.7
C5—C4—H4A 120.3 C20—C19—H19A 119.7
C4—C5—C6 120.3 (3) C19—C20—C21 118.8 (3)
C4—C5—H5A 119.8 C19—C20—H20A 120.6
C6—C5—H5A 119.8 C21—C20—H20A 120.6
C1—C6—C5 119.9 (3) C16—C21—C20 121.1 (3)
C1—C6—H6A 120.1 C16—C21—H21A 119.5
C5—C6—H6A 120.1 C20—C21—H21A 119.5
C2—C7—H7A 109.5 C17—C22—H22A 109.5
C2—C7—H7B 109.5 C17—C22—H22B 109.5
H7A—C7—H7B 109.5 H22A—C22—H22B 109.5
C2—C7—H7C 109.5 C17—C22—H22C 109.5
H7A—C7—H7C 109.5 H22A—C22—H22C 109.5
H7B—C7—H7C 109.5 H22B—C22—H22C 109.5
O1—C8—N1 120.8 (2) O2—C23—N2 120.2 (2)
O1—C8—C9 120.7 (2) O2—C23—C24 122.3 (2)
N1—C8—C9 118.4 (2) N2—C23—C24 117.5 (2)
C10—C9—C14 116.8 (3) C25—C24—C29 118.6 (2)
C10—C9—C8 124.5 (2) C25—C24—C23 118.6 (2)
C14—C9—C8 118.5 (2) C29—C24—C23 122.8 (2)
C11—C10—C9 120.8 (2) C26—C25—C24 120.4 (2)
C11—C10—H10A 119.6 C26—C25—H25A 119.8
C9—C10—H10A 119.6 C24—C25—H25A 119.8
C10—C11—C12 121.9 (3) C25—C26—C27 121.5 (3)
C10—C11—H11A 119.1 C25—C26—H26A 119.3
C12—C11—H11A 119.1 C27—C26—H26A 119.3
C13—C12—C11 117.3 (3) C28—C27—C26 117.7 (3)
C13—C12—C15 121.2 (3) C28—C27—C30 120.9 (2)
C11—C12—C15 121.5 (3) C26—C27—C30 121.4 (3)
C14—C13—C12 121.4 (3) C27—C28—C29 121.3 (2)
C14—C13—H13A 119.3 C27—C28—H28A 119.4
C12—C13—H13A 119.3 C29—C28—H28A 119.4
C13—C14—C9 121.7 (2) C28—C29—C24 120.5 (2)
C13—C14—H14A 119.1 C28—C29—H29A 119.7
C9—C14—H14A 119.1 C24—C29—H29A 119.7
C12—C15—H15A 109.5 C27—C30—H30A 109.5
C12—C15—H15B 109.5 C27—C30—H30B 109.5
H15A—C15—H15B 109.5 H30A—C30—H30B 109.5
C12—C15—H15C 109.5 C27—C30—H30C 109.5
H15A—C15—H15C 109.5 H30A—C30—H30C 109.5
H15B—C15—H15C 109.5 H30B—C30—H30C 109.5
C12—C15—H15D 109.4 C27—C30—H30D 115.3
H15A—C15—H15D 54.8 H30A—C30—H30D 58.1
H15B—C15—H15D 57.7 H30B—C30—H30D 52.6
H15C—C15—H15D 141.1 H30C—C30—H30D 135.2
C12—C15—H15E 112.3 C27—C30—H30E 110.2
H15A—C15—H15E 138.2 H30A—C30—H30E 140.3
H15B—C15—H15E 53.8 H30B—C30—H30E 57.9
H15C—C15—H15E 57.7 H30C—C30—H30E 54.3
H15D—C15—H15E 107.7 H30D—C30—H30E 105.2
C12—C15—H15F 110.8 C27—C30—H30F 111.6
H15A—C15—H15F 54.7 H30A—C30—H30F 58.1
H15B—C15—H15F 139.7 H30B—C30—H30F 138.8
H15C—C15—H15F 57.4 H30C—C30—H30F 53.7
H15D—C15—H15F 106.4 H30D—C30—H30F 109.3
H15E—C15—H15F 110.1 H30E—C30—H30F 104.5
C8—N1—C1—C6 63.9 (3) C23—N2—C16—C21 97.6 (3)
C8—N1—C1—C2 −118.2 (3) C23—N2—C16—C17 −86.8 (3)
C6—C1—C2—C3 0.1 (3) C21—C16—C17—C18 −0.7 (3)
N1—C1—C2—C3 −177.9 (2) N2—C16—C17—C18 −176.4 (2)
C6—C1—C2—C7 178.8 (2) C21—C16—C17—C22 177.1 (2)
N1—C1—C2—C7 0.8 (3) N2—C16—C17—C22 1.4 (3)
C1—C2—C3—C4 0.4 (4) C16—C17—C18—C19 0.8 (4)
C7—C2—C3—C4 −178.2 (2) C22—C17—C18—C19 −177.0 (3)
C2—C3—C4—C5 −0.5 (4) C17—C18—C19—C20 −0.1 (4)
C3—C4—C5—C6 −0.1 (4) C18—C19—C20—C21 −0.7 (4)
C2—C1—C6—C5 −0.6 (3) C17—C16—C21—C20 0.0 (3)
N1—C1—C6—C5 177.3 (2) N2—C16—C21—C20 175.7 (2)
C4—C5—C6—C1 0.6 (4) C19—C20—C21—C16 0.8 (4)
C1—N1—C8—O1 −3.2 (4) C16—N2—C23—O2 −1.5 (4)
C1—N1—C8—C9 174.6 (3) C16—N2—C23—C24 177.9 (3)
O1—C8—C9—C10 164.4 (3) O2—C23—C24—C25 28.9 (4)
N1—C8—C9—C10 −13.4 (4) N2—C23—C24—C25 −150.4 (2)
O1—C8—C9—C14 −10.5 (4) O2—C23—C24—C29 −152.7 (2)
N1—C8—C9—C14 171.7 (2) N2—C23—C24—C29 27.9 (4)
C14—C9—C10—C11 1.7 (4) C29—C24—C25—C26 −1.7 (4)
C8—C9—C10—C11 −173.2 (3) C23—C24—C25—C26 176.6 (2)
C9—C10—C11—C12 0.3 (4) C24—C25—C26—C27 1.1 (4)
C10—C11—C12—C13 −2.1 (4) C25—C26—C27—C28 0.8 (4)
C10—C11—C12—C15 176.0 (3) C25—C26—C27—C30 −179.3 (3)
C11—C12—C13—C14 1.9 (4) C26—C27—C28—C29 −2.0 (4)
C15—C12—C13—C14 −176.2 (3) C30—C27—C28—C29 178.0 (2)
C12—C13—C14—C9 0.1 (4) C27—C28—C29—C24 1.4 (4)
C10—C9—C14—C13 −2.0 (4) C25—C24—C29—C28 0.5 (4)
C8—C9—C14—C13 173.3 (3) C23—C24—C29—C28 −177.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.86 2.05 2.878 (2) 163
N2—H2A···O1i 0.86 2.05 2.883 (2) 162

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5550).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.
  3. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  7. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494. [DOI] [PMC free article] [PubMed]
  8. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1612. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018770/bt5550sup1.cif

e-67-o1500-sup1.cif (25.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018770/bt5550Isup2.hkl

e-67-o1500-Isup2.hkl (213.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018770/bt5550Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES