Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):m669–m670. doi: 10.1107/S1600536811015844

Poly[(μ3-benzene-1,3,5-tricarboxyl­ato-κ3 O 1:O 3:O 5)(μ2-2-methyl­imidazolato-κ2 N:N′)tris­(2-methyl­imidazole-κN)dizinc(II)]

Palanikumar Maniam a, Norbert Stock a,*
PMCID: PMC3120569  PMID: 21754580

Abstract

Hydro­thermal reaction involving zinc nitrate hexa­hydrate, tris­odium benzene-1,3,5-tricarboxyl­ate (Na3BTC) and 2-methyl­imidazole (2-MeImH) yielded the title compound, [Zn2(C9H3O6)(C4H5N2)(C4H6N2)3]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH mol­ecules and (2-MeIm) ions, as well as by O atoms from (BTC)3− ions. This results in two different distorted tetra­hedra, viz. ZnN3O and ZnN2O2. These tetra­hedra are inter­connected via (BTC)3− ions and N:N′-bridging (2-MeIm) ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxyl­ate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

Related literature

For metal-organic frameworks, see: Li et al. (1999); Kitagawa et al. (2004); Stock (2010); Maniam et al. (2010). For related structures, see: Cheng et al. (2001); Zheng et al. (2010); Huang et al. (2006); Martins et al. (2010); Park et al. (2006).graphic file with name e-67-0m669-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C9H3O6)(C4H5N2)(C4H6N2)3]

  • M r = 665.28

  • Orthorhombic, Inline graphic

  • a = 18.9722 (6) Å

  • b = 18.2247 (4) Å

  • c = 16.5585 (4) Å

  • V = 5725.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 293 K

  • 0.16 × 0.09 × 0.07 mm

Data collection

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2008) T min = 0.684, T max = 0.814

  • 38494 measured reflections

  • 7732 independent reflections

  • 6222 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.143

  • S = 1.13

  • 7732 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015844/bt5531sup1.cif

e-67-0m669-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015844/bt5531Isup2.hkl

e-67-0m669-Isup2.hkl (378.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—O4 1.942 (3)
Zn2—O6 1.968 (3)
Zn2—O1i 1.976 (2)
Zn1—N2Hii 1.971 (3)
Zn1—N1F 1.998 (3)
Zn1—N1G 2.015 (4)
Zn2—N1H 1.992 (3)
Zn2—N1E 2.027 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2E—H2EN⋯O3iii 0.86 2.06 2.912 (5) 169
N2F—H2FN⋯O2iv 0.86 1.84 2.693 (5) 172
N2G—H2GN⋯O5v 0.86 1.94 2.798 (5) 175

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank Dr Christian Näther and Inke Jess (University of Kiel) for the acquisition of the single-crystal data. This work was supported by the State of Schleswig–Holstein, Germany and the German Research Foundation (DFG; SPP-1362).

supplementary crystallographic information

Comment

Metal-organic frameworks (MOF) are being investigated intensively, mainly for their high specific surface areas (Li et al., 1999; Kitagawa et al., 2004). In our workgroup, we are interested in using organic ligands containing multiple functional groups as the linkers for the MOFs. We employ high-throughput (HT) methods, which allow the rapid and systematic investigation of compound formation fields (Stock, 2010; Maniam et al., 2010). HT-screening of various first row transition metal ions with trisodium benzene-1,3,5-tricarboxylate (Na3BTC) and 2-methylimidazole (2-MeImH) has yielded the colorless block crystals of (I). The asymmetric unit of compound (I) consists of two crystallographically independent Zn2+ ions, one fully deprotonated (BTC)3-, one 2-methylimidazolate (2-MeIm)- ion and three 2-MeImH ligands (Fig. 1). The Zn2+ ions are tetrahedrally coordinated by oxygen atoms originating from (BTC)3- and nitrogen atoms from (2-MeIm)- and 2-MeImH. The Zn···O bond distances lie between 1.942 (3)–1.976 (2) Å which are slightly shorter than Zn···N bonds of 1.971 (3)–2.027 (3) Å. The bond angles in ZnN3O tetrahedra ranges between 100.42 (14)–116.61 (16)° while in ZnN2O2, the bond angles of 96.73 (13)–122.12 (11)° are observed (Tab. 1 & Tab. 2). It was also observed that Zn-(2-MeIm)-—Zn angle lies at 146.8 (1)° which is close to 145° angles in zeolitic imidazolate frameworks and zeolite structures (Park et al.., 2006). The C=O and C—O bonds in the carboxylate groups can be clearly distinguished from each other by their bond lengths of 1.229 (5)–1.236 (5) Å and 1.266 (4)–1.275 (4) Å, respectively. Weak hydrogen bonds in the 2.6 < d(O···H—N) < 3.0 Å range are observed between the O atoms of the carboxylate ions and N—H groups of the 2-MeImH ligands (Fig. 2).

By considering the ZnN3O and ZnN2O2 tetrahedra bridged by the (2-MeIm)- as a Zn-(2-MeIm)-Zn dimer, this dimer is connected to three terminal 2-MeImH ligands and three (BTC)3- ions. Each (BTC)3- ion is then further connected to two Zn-(2-MeIm)-Zn dimers (Fig. 3) and layers in the bc plane are formed. Through extensive O···H—N hydrogen bonding, the layers are interconnected along the a-axis to form a dense three-dimensional crystal structure (Fig. 4, Tab. 2).

Experimental

All reagents were of analytical grade (Aldrich and Fluka) and were used without further purification. High-throughput (HT) experiments in 300 ml Teflon-lined reactors yielded the crystals of compound (I). The reaction mixture consisted of zinc(II) nitrate hexahydrate (5.9 mg, 0.02 mmol), Na3(BTC) (2.76 mg, 0.01 mmol), 2-methylimidazole (4.11 mg, 0.05 mmol) and deionized water (200 ml). The mixture was heated in a 300 µl Teflon-lined high-throughput reactor at 423 K for 48 h (Stock, 2010). The mixture was cooled to room temperature over a period of 12 h and colourless plate-like crystals were obtained.

Refinement

All H atoms were located in difference Fourier maps. Idealized values for the bond lengths (C—H = 0.93 Å and N—H = 0.86 Å) and angles were used and the H-atom parameters were refined using a riding model. The highest peak of 0.47 e Å-3 in the residual electron density map is located 0.82 Å from N1H and the deepest hole of 0.54 e Å-3 is located 0.69 Å from Zn1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

The tetrahedral coordination environment of the Zn1 and Zn2 ions. Green broken lines indicate the weak hydrogen bonds between the carboxylate groups of the (BTC)3- ions and H—N groups of the 2-MeImH ligands. [Symmetry codes: (i) -x + 3/2, y + 1/2, z; (ii) x, -y, z + 1/2; (iii) x, -y, z - 1/2; (iv) -x + 3/2, y - 1/2, z; (v) x + 1/2, -y + 1/2, -z; (vi) -x + 1, y, -z - 1/2; (vii) -x + 1, y, -z + 1/2; (viii) x - 1/2, -y + 1/2, -z.]

Fig. 3.

Fig. 3.

Ball-and-stick representation for (I) showing the interconnection of Zn-(2-MeIm)-Zn dimers (marked as differently colored polyhedra) by (BTC)3- ions and thus forming a layered arrangement in the b,c plane. Zn: purple, O: grey, N: blue, C: black and H: green. Hydrogen atoms of (BTC)3- are omitted for clarity.

Fig. 4.

Fig. 4.

Layer packing diagram of compound (I). All atoms of one layer are presented by the same colour. H-bonds (see Fig. 2) between the layers are depicted by black broken lines.

Crystal data

[Zn2(C9H3O6)(C4H5N2)(C4H6N2)3] F(000) = 2720
Mr = 665.28 Dx = 1.544 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 40409 reflections
a = 18.9722 (6) Å θ = 1.6–29.7°
b = 18.2247 (4) Å µ = 1.73 mm1
c = 16.5585 (4) Å T = 293 K
V = 5725.3 (3) Å3 Block, colourless
Z = 8 0.16 × 0.09 × 0.07 mm

Data collection

Stoe IPDS-1 diffractometer 7732 independent reflections
Radiation source: fine-focus sealed tube 6222 reflections with I > 2σ(I)
graphite Rint = 0.050
φ scans θmax = 29.3°, θmin = 1.6°
Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2008) h = −26→26
Tmin = 0.684, Tmax = 0.814 k = −24→23
38494 measured reflections l = −16→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0602P)2 + 8.9412P] where P = (Fo2 + 2Fc2)/3
7732 reflections (Δ/σ)max < 0.001
370 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.45797 (2) 0.21003 (2) 0.06434 (3) 0.03012 (11)
Zn2 0.86974 (2) −0.02837 (2) 0.16875 (2) 0.02691 (11)
O1 0.82544 (13) 0.04108 (16) −0.22416 (15) 0.0317 (6)
O2 0.75851 (19) 0.1297 (2) −0.27156 (19) 0.0542 (9)
O3 0.54340 (16) 0.20240 (19) −0.1090 (2) 0.0482 (8)
O4 0.53500 (14) 0.15579 (16) 0.01530 (17) 0.0372 (6)
O5 0.73489 (17) 0.0422 (2) 0.14383 (17) 0.0461 (8)
O6 0.81368 (14) −0.01665 (16) 0.06956 (16) 0.0367 (6)
C1 0.73604 (17) 0.0869 (2) −0.1391 (2) 0.0262 (6)
C2 0.67256 (19) 0.1251 (2) −0.1327 (2) 0.0301 (7)
H2A 0.6548 0.1500 −0.1773 0.036*
C3 0.63563 (18) 0.1261 (2) −0.0602 (2) 0.0299 (7)
C4 0.66398 (18) 0.0910 (2) 0.0066 (2) 0.0301 (7)
H4A 0.6397 0.0921 0.0554 0.036*
C5 0.72805 (18) 0.0544 (2) 0.0019 (2) 0.0271 (7)
C6 0.76310 (18) 0.0509 (2) −0.0720 (2) 0.0276 (7)
H6A 0.8048 0.0243 −0.0763 0.033*
C7 0.77524 (18) 0.0865 (2) −0.2179 (2) 0.0289 (7)
C8 0.56601 (18) 0.1652 (2) −0.0522 (2) 0.0302 (7)
C9 0.76020 (19) 0.0245 (2) 0.0779 (2) 0.0296 (7)
C1E 0.9480 (2) 0.1157 (3) 0.1420 (3) 0.0398 (9)
C2E 0.9061 (3) 0.1880 (3) 0.2364 (3) 0.0512 (11)
H2E 0.8966 0.2290 0.2680 0.061*
C3E 0.8810 (2) 0.1201 (3) 0.2469 (3) 0.0423 (9)
H3E 0.8505 0.1058 0.2879 0.051*
C4E 0.9881 (3) 0.0916 (3) 0.0703 (3) 0.0579 (13)
H4E1 1.0137 0.1325 0.0484 0.070*
H4E2 0.9561 0.0730 0.0304 0.070*
H4E3 1.0206 0.0537 0.0856 0.070*
N1E 0.90718 (18) 0.07433 (19) 0.1879 (2) 0.0352 (7)
N2E 0.9484 (2) 0.1849 (2) 0.1696 (3) 0.0471 (9)
H2EN 0.9713 0.2210 0.1489 0.057*
C1F 0.3558 (2) 0.1785 (2) −0.0669 (3) 0.0396 (9)
C2F 0.3373 (2) 0.2885 (3) −0.0222 (3) 0.0427 (10)
H2F 0.3412 0.3314 0.0079 0.051*
C3F 0.2905 (2) 0.2767 (3) −0.0822 (3) 0.0495 (11)
H3F 0.2565 0.3093 −0.1010 0.059*
C4F 0.3840 (3) 0.1032 (3) −0.0801 (4) 0.0613 (15)
H4F1 0.3585 0.0800 −0.1232 0.074*
H4F2 0.3787 0.0749 −0.0315 0.074*
H4F3 0.4330 0.1060 −0.0941 0.074*
N1F 0.37830 (16) 0.22648 (19) −0.0125 (2) 0.0353 (7)
N2F 0.30319 (19) 0.2075 (2) −0.1096 (3) 0.0479 (9)
H2FN 0.2809 0.1861 −0.1482 0.057*
C1G 0.3665 (3) 0.1373 (3) 0.1915 (4) 0.0604 (14)
C2G 0.4502 (3) 0.0661 (3) 0.1528 (4) 0.0667 (16)
H2G 0.4899 0.0485 0.1260 0.080*
C3G 0.4119 (4) 0.0282 (4) 0.2072 (4) 0.0738 (17)
H3G 0.4194 −0.0198 0.2241 0.089*
C4G 0.3175 (5) 0.2000 (5) 0.1996 (7) 0.131 (4)
H4G1 0.2818 0.1883 0.2386 0.157*
H4G2 0.2958 0.2098 0.1484 0.157*
H4G3 0.3431 0.2426 0.2172 0.157*
N1G 0.4217 (2) 0.1347 (2) 0.1431 (2) 0.0444 (8)
N2G 0.3604 (3) 0.0740 (3) 0.2321 (3) 0.0631 (13)
H2GN 0.3290 0.0643 0.2680 0.076*
C1H 0.94630 (18) −0.1645 (2) 0.1130 (2) 0.0328 (8)
C2H 1.01834 (19) −0.0828 (2) 0.1579 (2) 0.0338 (8)
H2H 1.0369 −0.0393 0.1782 0.041*
C3H 1.05531 (18) −0.1437 (2) 0.1393 (3) 0.0359 (8)
H3H 1.1038 −0.1493 0.1452 0.043*
C4H 0.8800 (2) −0.2001 (3) 0.0853 (4) 0.0578 (15)
H4H1 0.8900 −0.2490 0.0671 0.069*
H4H2 0.8601 −0.1721 0.0418 0.069*
H4H3 0.8470 −0.2020 0.1293 0.069*
N1H 0.94875 (15) −0.09609 (18) 0.14179 (19) 0.0302 (6)
N2H 1.01007 (16) −0.19593 (18) 0.1103 (2) 0.0324 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02406 (18) 0.0339 (2) 0.0324 (2) −0.00044 (16) 0.00318 (16) −0.00303 (18)
Zn2 0.02578 (18) 0.0330 (2) 0.02195 (18) 0.00254 (16) 0.00150 (15) 0.00171 (16)
O1 0.0277 (11) 0.0457 (15) 0.0218 (11) 0.0058 (10) 0.0038 (9) −0.0020 (11)
O2 0.064 (2) 0.067 (2) 0.0317 (15) 0.0266 (17) 0.0106 (14) 0.0175 (16)
O3 0.0392 (15) 0.059 (2) 0.0460 (17) 0.0201 (14) 0.0056 (14) 0.0122 (16)
O4 0.0305 (13) 0.0449 (15) 0.0361 (15) 0.0112 (11) 0.0091 (11) 0.0009 (12)
O5 0.0490 (17) 0.066 (2) 0.0232 (12) 0.0188 (15) 0.0029 (12) 0.0022 (14)
O6 0.0354 (13) 0.0493 (17) 0.0254 (12) 0.0162 (12) −0.0044 (10) 0.0017 (12)
C1 0.0248 (15) 0.0310 (17) 0.0228 (15) −0.0002 (13) 0.0014 (12) −0.0024 (13)
C2 0.0306 (16) 0.0342 (18) 0.0253 (16) 0.0060 (14) −0.0006 (13) 0.0027 (15)
C3 0.0293 (16) 0.0323 (17) 0.0281 (17) 0.0038 (13) 0.0033 (14) 0.0000 (14)
C4 0.0268 (15) 0.0383 (19) 0.0252 (16) 0.0017 (14) 0.0035 (13) 0.0017 (15)
C5 0.0274 (15) 0.0325 (17) 0.0215 (15) 0.0023 (13) −0.0009 (12) −0.0003 (13)
C6 0.0255 (15) 0.0323 (17) 0.0250 (16) 0.0041 (12) −0.0006 (12) −0.0012 (14)
C7 0.0283 (15) 0.0357 (18) 0.0228 (15) 0.0002 (13) 0.0002 (12) 0.0002 (14)
C8 0.0256 (15) 0.0348 (18) 0.0300 (18) 0.0031 (13) 0.0010 (13) −0.0009 (15)
C9 0.0301 (16) 0.0369 (18) 0.0217 (15) 0.0030 (14) −0.0010 (12) 0.0014 (14)
C1E 0.037 (2) 0.044 (2) 0.038 (2) −0.0042 (17) 0.0001 (16) 0.0052 (18)
C2E 0.058 (3) 0.041 (2) 0.054 (3) −0.005 (2) −0.004 (2) −0.009 (2)
C3E 0.042 (2) 0.044 (2) 0.041 (2) −0.0027 (17) 0.0055 (17) −0.0072 (19)
C4E 0.061 (3) 0.065 (3) 0.048 (3) −0.002 (3) 0.019 (2) 0.014 (3)
N1E 0.0395 (17) 0.0330 (17) 0.0330 (17) −0.0053 (13) 0.0025 (13) −0.0001 (13)
N2E 0.049 (2) 0.0393 (19) 0.053 (2) −0.0128 (16) −0.0061 (18) 0.0047 (18)
C1F 0.0324 (18) 0.042 (2) 0.045 (2) −0.0075 (16) −0.0023 (16) −0.0096 (19)
C2F 0.0330 (18) 0.043 (2) 0.052 (3) 0.0046 (16) −0.0054 (17) −0.016 (2)
C3F 0.037 (2) 0.057 (3) 0.055 (3) 0.0069 (19) −0.0136 (19) −0.014 (2)
C4F 0.058 (3) 0.040 (3) 0.086 (4) −0.003 (2) −0.010 (3) −0.021 (3)
N1F 0.0261 (14) 0.0379 (17) 0.0420 (18) −0.0006 (12) −0.0046 (13) −0.0075 (14)
N2F 0.0368 (17) 0.057 (2) 0.049 (2) −0.0025 (16) −0.0129 (16) −0.0165 (19)
C1G 0.066 (3) 0.054 (3) 0.061 (3) −0.016 (2) 0.034 (3) −0.003 (3)
C2G 0.063 (3) 0.061 (3) 0.076 (4) 0.006 (3) 0.016 (3) 0.024 (3)
C3G 0.080 (4) 0.067 (4) 0.074 (4) −0.005 (3) 0.008 (3) 0.028 (3)
C4G 0.130 (7) 0.093 (6) 0.169 (10) 0.021 (5) 0.116 (7) 0.016 (6)
N1G 0.0441 (19) 0.049 (2) 0.0405 (19) −0.0053 (16) 0.0117 (16) 0.0037 (17)
N2G 0.072 (3) 0.070 (3) 0.047 (2) −0.027 (2) 0.020 (2) 0.004 (2)
C1H 0.0244 (16) 0.039 (2) 0.0348 (19) 0.0002 (14) 0.0025 (14) −0.0037 (16)
C2H 0.0288 (16) 0.041 (2) 0.0317 (19) 0.0012 (15) −0.0039 (14) −0.0053 (16)
C3H 0.0219 (15) 0.048 (2) 0.038 (2) 0.0040 (14) −0.0044 (14) −0.0122 (18)
C4H 0.0225 (18) 0.058 (3) 0.092 (4) 0.0010 (18) 0.000 (2) −0.024 (3)
N1H 0.0244 (13) 0.0361 (16) 0.0302 (15) 0.0039 (12) 0.0007 (11) −0.0044 (13)
N2H 0.0257 (14) 0.0363 (17) 0.0350 (16) 0.0034 (12) 0.0002 (12) −0.0051 (14)

Geometric parameters (Å, °)

Zn1—O4 1.942 (3) N2E—H2EN 0.8600
Zn2—O6 1.968 (3) C1F—N1F 1.325 (5)
Zn2—O1i 1.976 (2) C1F—N2F 1.333 (6)
Zn1—N2Hii 1.971 (3) C1F—C4F 1.490 (7)
Zn1—N1F 1.998 (3) C2F—C3F 1.349 (6)
Zn1—N1G 2.015 (4) C2F—N1F 1.381 (5)
Zn2—N1H 1.992 (3) C2F—H2F 0.9300
Zn2—N1E 2.027 (3) C3F—N2F 1.361 (6)
O1—C7 1.265 (4) C3F—H3F 0.9300
O2—C7 1.228 (5) C4F—H4F1 0.9600
O3—C8 1.236 (5) C4F—H4F2 0.9600
O4—C8 1.274 (5) C4F—H4F3 0.9600
O5—C9 1.236 (5) N2F—H2FN 0.8600
O6—C9 1.269 (4) C1G—N1G 1.319 (6)
C1—C6 1.388 (5) C1G—N2G 1.340 (7)
C1—C2 1.395 (5) C1G—C4G 1.480 (10)
C1—C7 1.503 (5) C2G—C3G 1.348 (8)
C2—C3 1.390 (5) C2G—N1G 1.372 (7)
C2—H2A 0.9300 C2G—H2G 0.9300
C3—C4 1.386 (5) C3G—N2G 1.349 (8)
C3—C8 1.507 (5) C3G—H3G 0.9300
C4—C5 1.389 (5) C4G—H4G1 0.9600
C4—H4A 0.9300 C4G—H4G2 0.9600
C5—C6 1.394 (5) C4G—H4G3 0.9600
C5—C9 1.501 (5) N2G—H2GN 0.8600
C6—H6A 0.9300 C1H—N1H 1.336 (5)
C1E—N1E 1.321 (5) C1H—N2H 1.339 (4)
C1E—N2E 1.340 (6) C1H—C4H 1.488 (5)
C1E—C4E 1.477 (7) C2H—C3H 1.348 (6)
C2E—C3E 1.338 (7) C2H—N1H 1.369 (4)
C2E—N2E 1.368 (7) C2H—H2H 0.9300
C2E—H2E 0.9300 C3H—N2H 1.368 (5)
C3E—N1E 1.377 (5) C3H—H3H 0.9300
C3E—H3E 0.9300 C4H—H4H1 0.9600
C4E—H4E1 0.9600 C4H—H4H2 0.9600
C4E—H4E2 0.9600 C4H—H4H3 0.9600
C4E—H4E3 0.9600
O4—Zn1—N2Hii 111.87 (13) N1F—C1F—N2F 109.9 (4)
O4—Zn1—N1F 112.28 (13) N1F—C1F—C4F 126.3 (4)
N2Hii—Zn1—N1F 110.38 (14) N2F—C1F—C4F 123.8 (4)
O4—Zn1—N1G 100.42 (14) C3F—C2F—N1F 109.0 (4)
N2Hii—Zn1—N1G 116.61 (16) C3F—C2F—H2F 125.5
N1F—Zn1—N1G 104.81 (15) N1F—C2F—H2F 125.5
O6—Zn2—O1i 122.12 (11) C2F—C3F—N2F 106.1 (4)
O6—Zn2—N1H 106.66 (12) C2F—C3F—H3F 127.0
O1i—Zn2—N1H 116.64 (13) N2F—C3F—H3F 127.0
O6—Zn2—N1E 102.68 (13) C1F—C4F—H4F1 109.5
O1i—Zn2—N1E 96.73 (13) C1F—C4F—H4F2 109.5
N1H—Zn2—N1E 110.08 (13) H4F1—C4F—H4F2 109.5
C7—O1—Zn2iii 118.0 (2) C1F—C4F—H4F3 109.5
C8—O4—Zn1 130.2 (3) H4F1—C4F—H4F3 109.5
C9—O6—Zn2 113.9 (2) H4F2—C4F—H4F3 109.5
C6—C1—C2 119.6 (3) C1F—N1F—C2F 106.2 (3)
C6—C1—C7 120.7 (3) C1F—N1F—Zn1 125.3 (3)
C2—C1—C7 119.7 (3) C2F—N1F—Zn1 128.5 (3)
C3—C2—C1 120.5 (3) C1F—N2F—C3F 108.8 (4)
C3—C2—H2A 119.8 C1F—N2F—H2FN 125.6
C1—C2—H2A 119.8 C3F—N2F—H2FN 125.6
C4—C3—C2 119.2 (3) N1G—C1G—N2G 110.0 (5)
C4—C3—C8 119.2 (3) N1G—C1G—C4G 125.6 (5)
C2—C3—C8 121.6 (3) N2G—C1G—C4G 124.4 (5)
C3—C4—C5 121.1 (3) C3G—C2G—N1G 109.4 (6)
C3—C4—H4A 119.5 C3G—C2G—H2G 125.3
C5—C4—H4A 119.5 N1G—C2G—H2G 125.3
C4—C5—C6 119.3 (3) N2G—C3G—C2G 106.1 (6)
C4—C5—C9 118.9 (3) N2G—C3G—H3G 126.9
C6—C5—C9 121.7 (3) C2G—C3G—H3G 126.9
C1—C6—C5 120.3 (3) C1G—C4G—H4G1 109.5
C1—C6—H6A 119.9 C1G—C4G—H4G2 109.5
C5—C6—H6A 119.9 H4G1—C4G—H4G2 109.5
O2—C7—O1 123.7 (3) C1G—C4G—H4G3 109.5
O2—C7—C1 119.8 (3) H4G1—C4G—H4G3 109.5
O1—C7—C1 116.5 (3) H4G2—C4G—H4G3 109.5
O3—C8—O4 125.5 (3) C1G—N1G—C2G 105.9 (4)
O3—C8—C3 119.8 (3) C1G—N1G—Zn1 129.8 (4)
O4—C8—C3 114.7 (3) C2G—N1G—Zn1 124.2 (3)
O5—C9—O6 124.1 (3) C1G—N2G—C3G 108.5 (4)
O5—C9—C5 119.2 (3) C1G—N2G—H2GN 125.8
O6—C9—C5 116.7 (3) C3G—N2G—H2GN 125.8
N1E—C1E—N2E 110.2 (4) N1H—C1H—N2H 112.3 (3)
N1E—C1E—C4E 126.4 (4) N1H—C1H—C4H 123.1 (3)
N2E—C1E—C4E 123.4 (4) N2H—C1H—C4H 124.6 (4)
C3E—C2E—N2E 105.9 (4) C3H—C2H—N1H 108.2 (3)
C3E—C2E—H2E 127.0 C3H—C2H—H2H 125.9
N2E—C2E—H2E 127.0 N1H—C2H—H2H 125.9
C2E—C3E—N1E 109.9 (4) C2H—C3H—N2H 109.1 (3)
C2E—C3E—H3E 125.1 C2H—C3H—H3H 125.5
N1E—C3E—H3E 125.1 N2H—C3H—H3H 125.5
C1E—C4E—H4E1 109.5 C1H—C4H—H4H1 109.5
C1E—C4E—H4E2 109.5 C1H—C4H—H4H2 109.5
H4E1—C4E—H4E2 109.5 H4H1—C4H—H4H2 109.5
C1E—C4E—H4E3 109.5 C1H—C4H—H4H3 109.5
H4E1—C4E—H4E3 109.5 H4H1—C4H—H4H3 109.5
H4E2—C4E—H4E3 109.5 H4H2—C4H—H4H3 109.5
C1E—N1E—C3E 105.8 (4) C1H—N1H—C2H 105.6 (3)
C1E—N1E—Zn2 130.0 (3) C1H—N1H—Zn2 129.2 (2)
C3E—N1E—Zn2 122.9 (3) C2H—N1H—Zn2 124.9 (3)
C1E—N2E—C2E 108.2 (4) C1H—N2H—C3H 104.9 (3)
C1E—N2E—H2EN 125.9 C1H—N2H—Zn1iv 131.5 (3)
C2E—N2E—H2EN 125.9 C3H—N2H—Zn1iv 123.2 (2)
N2Hii—Zn1—O4—C8 −76.9 (4) N1F—C2F—C3F—N2F −0.3 (6)
N1F—Zn1—O4—C8 47.9 (4) N2F—C1F—N1F—C2F 0.0 (5)
N1G—Zn1—O4—C8 158.8 (4) C4F—C1F—N1F—C2F 179.9 (5)
O1i—Zn2—O6—C9 41.1 (3) N2F—C1F—N1F—Zn1 −178.4 (3)
N1H—Zn2—O6—C9 178.8 (3) C4F—C1F—N1F—Zn1 1.5 (7)
N1E—Zn2—O6—C9 −65.4 (3) C3F—C2F—N1F—C1F 0.2 (5)
C6—C1—C2—C3 −1.3 (6) C3F—C2F—N1F—Zn1 178.5 (3)
C7—C1—C2—C3 −180.0 (3) O4—Zn1—N1F—C1F 37.9 (4)
C1—C2—C3—C4 2.5 (6) N2Hii—Zn1—N1F—C1F 163.5 (3)
C1—C2—C3—C8 −178.4 (3) N1G—Zn1—N1F—C1F −70.2 (4)
C2—C3—C4—C5 −0.7 (6) O4—Zn1—N1F—C2F −140.1 (4)
C8—C3—C4—C5 −179.9 (3) N2Hii—Zn1—N1F—C2F −14.6 (4)
C3—C4—C5—C6 −2.2 (6) N1G—Zn1—N1F—C2F 111.8 (4)
C3—C4—C5—C9 173.4 (4) N1F—C1F—N2F—C3F −0.2 (6)
C2—C1—C6—C5 −1.7 (5) C4F—C1F—N2F—C3F 179.9 (5)
C7—C1—C6—C5 177.0 (3) C2F—C3F—N2F—C1F 0.3 (6)
C4—C5—C6—C1 3.4 (5) N1G—C2G—C3G—N2G −1.1 (8)
C9—C5—C6—C1 −172.1 (3) N2G—C1G—N1G—C2G 1.3 (7)
Zn2iii—O1—C7—O2 −9.8 (5) C4G—C1G—N1G—C2G −177.9 (8)
Zn2iii—O1—C7—C1 171.5 (2) N2G—C1G—N1G—Zn1 178.2 (4)
C6—C1—C7—O2 −165.6 (4) C4G—C1G—N1G—Zn1 −1.0 (11)
C2—C1—C7—O2 13.0 (6) C3G—C2G—N1G—C1G −0.1 (8)
C6—C1—C7—O1 13.2 (5) C3G—C2G—N1G—Zn1 −177.2 (5)
C2—C1—C7—O1 −168.2 (3) O4—Zn1—N1G—C1G −175.7 (5)
Zn1—O4—C8—O3 −16.3 (6) N2Hii—Zn1—N1G—C1G 63.3 (5)
Zn1—O4—C8—C3 164.1 (3) N1F—Zn1—N1G—C1G −59.1 (5)
C4—C3—C8—O3 173.2 (4) O4—Zn1—N1G—C2G 0.7 (5)
C2—C3—C8—O3 −5.9 (6) N2Hii—Zn1—N1G—C2G −120.3 (5)
C4—C3—C8—O4 −7.2 (5) N1F—Zn1—N1G—C2G 117.3 (5)
C2—C3—C8—O4 173.7 (4) N1G—C1G—N2G—C3G −2.0 (7)
Zn2—O6—C9—O5 −16.2 (5) C4G—C1G—N2G—C3G 177.2 (8)
Zn2—O6—C9—C5 161.9 (3) C2G—C3G—N2G—C1G 1.9 (8)
C4—C5—C9—O5 −10.7 (6) N1H—C2H—C3H—N2H 0.7 (5)
C6—C5—C9—O5 164.7 (4) N2H—C1H—N1H—C2H 0.4 (5)
C4—C5—C9—O6 171.0 (3) C4H—C1H—N1H—C2H −178.0 (4)
C6—C5—C9—O6 −13.5 (5) N2H—C1H—N1H—Zn2 −173.3 (3)
N2E—C2E—C3E—N1E 0.2 (6) C4H—C1H—N1H—Zn2 8.2 (6)
N2E—C1E—N1E—C3E −0.1 (5) C3H—C2H—N1H—C1H −0.7 (4)
C4E—C1E—N1E—C3E −179.9 (5) C3H—C2H—N1H—Zn2 173.4 (3)
N2E—C1E—N1E—Zn2 167.5 (3) O6—Zn2—N1H—C1H −57.7 (4)
C4E—C1E—N1E—Zn2 −12.4 (7) O1i—Zn2—N1H—C1H 82.7 (4)
C2E—C3E—N1E—C1E −0.1 (5) N1E—Zn2—N1H—C1H −168.4 (3)
C2E—C3E—N1E—Zn2 −168.8 (3) O6—Zn2—N1H—C2H 129.6 (3)
O6—Zn2—N1E—C1E −60.7 (4) O1i—Zn2—N1H—C2H −89.9 (3)
O1i—Zn2—N1E—C1E 174.2 (4) N1E—Zn2—N1H—C2H 18.9 (4)
N1H—Zn2—N1E—C1E 52.6 (4) N1H—C1H—N2H—C3H 0.0 (5)
O6—Zn2—N1E—C3E 105.0 (3) C4H—C1H—N2H—C3H 178.4 (5)
O1i—Zn2—N1E—C3E −20.1 (4) N1H—C1H—N2H—Zn1iv −172.7 (3)
N1H—Zn2—N1E—C3E −141.7 (3) C4H—C1H—N2H—Zn1iv 5.7 (7)
N1E—C1E—N2E—C2E 0.2 (5) C2H—C3H—N2H—C1H −0.4 (5)
C4E—C1E—N2E—C2E −179.9 (5) C2H—C3H—N2H—Zn1iv 173.0 (3)
C3E—C2E—N2E—C1E −0.2 (5)

Symmetry codes: (i) x, −y, z+1/2; (ii) −x+3/2, y+1/2, z; (iii) x, −y, z−1/2; (iv) −x+3/2, y−1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2E—H2EN···O3v 0.86 2.06 2.912 (5) 169
N2F—H2FN···O2vi 0.86 1.84 2.693 (5) 172
N2G—H2GN···O5vii 0.86 1.94 2.798 (5) 175

Symmetry codes: (v) x+1/2, −y+1/2, −z; (vi) −x+1, y, −z−1/2; (vii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5531).

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Cheng, D., Khan, M. A. & Houser, R. P. (2001). Inorg. Chem. 40, 6858–6859. [DOI] [PubMed]
  3. Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557–1559.
  4. Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
  5. Li, H., Eddadoudi, M., O’Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.
  6. Maniam, P., Näther, C. & Stock, N. (2010). Eur. J. Inorg. Chem. pp. 3866–3874.
  7. Martins, G. A. V., Byrne, P. J., Allan, P., Tea, S. J., Slawin, A. M. Z., Li, Y. & Morris, R. E. (2010). Dalton Trans. 39, 1758–1762. [DOI] [PubMed]
  8. Park, K. S., Ni, Z., Coté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stock, N. (2010). Microporous Mesoporous Mater. 129, 287–295.
  11. Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  12. Zheng, S., Wu, T., Zhang, J., Chow, M., Nieto, R. A., Feng, P. & Bu, X. (2010). Angew. Chem. Int. Ed. 49, 5362–5366. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015844/bt5531sup1.cif

e-67-0m669-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015844/bt5531Isup2.hkl

e-67-0m669-Isup2.hkl (378.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES