Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):i36. doi: 10.1107/S1600536811017806

Neodymium(III) molybdenum(VI) borate, NdBO2MoO4

Peter Held a,*, Benjamin van der Wolf a, Ladislav Bohatý a, Petra Becker a
PMCID: PMC3120577  PMID: 21754565

Abstract

Single crystals of NdBO2MoO4 were obtained from a molybdenum oxide–boron oxide flux under an air atmosphere. The structure features double chains of edge- and face-sharing distorted [NdO10] bicapped square-anti­prisms, which are linked by rows of isolated [MoO4] tetra­hedra and by zigzag chains of corner-sharing [BO3] groups, all of them running along the b axis. The chains of [NdO10], chains of [BO3] and rows of [MoO4] groups are arranged in layers parallel to the bc plane.

Related literature

A rough investigation of subsolidus phase relations in the pseudo-ternary system Nd2O3 – B2O3 – MoO3 has been reported by Lysanova et al. (1983) and Dzhurinskii & Lysanova (1998). X-ray powder diffraction data of LnBO2MoO4 (Ln = La, Ce, Pr, Nd) are given by Lysanova et al. (1983). The occurrence of a structural phase transition of LaBO2MoO4 was reported by Becker et al. (2008). For determinations of related structures, see: Palkina et al. (1979); Zhao et al. (2008, 2009) for LaBO2MoO4; Zhao et al. (2008) for CeBO2MoO4.

Experimental

Crystal data

  • NdMoBO6

  • M r = 346.99

  • Monoclinic, Inline graphic

  • a = 10.1218 (19) Å

  • b = 4.1420 (5) Å

  • c = 11.896 (3) Å

  • β = 116.897 (14)°

  • V = 444.78 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.30 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Enraf–Nonius CAD-4/MACH3 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990) T min = 0.487, T max = 0.998

  • 5004 measured reflections

  • 1344 independent reflections

  • 1268 reflections with I > 2σ(I)

  • R int = 0.035

  • 3 standard reflections every 100 reflections intensity decay: 2.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.063

  • S = 1.22

  • 1344 reflections

  • 83 parameters

  • Δρmax = 2.24 e Å−3

  • Δρmin = −1.61 e Å−3

Data collection: MACH3 (Enraf–Nonius, 1993); cell refinement: MACH3; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017806/fi2107sup1.cif

e-67-00i36-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017806/fi2107Isup2.hkl

e-67-00i36-Isup2.hkl (66.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under projects BO 1017/5–2 and BE 2147/6–2.

supplementary crystallographic information

Comment

In the family of lanthanide compounds LnBO2MoO4 the crystal structure of LaBO2MoO4 was first described by Palkina et al. (1979), giving the polar space group P21 and lattice constants a = 5.964 (1) Å, b = 4.147 (1) Å, c = 9.373 (3) Å, β = 99.28 (2)°. On the basis of X-ray powder diffraction data, Lysanova et al. (1983) claimed the isomorphism of the compounds LnBO2MoO4 with Ln = La, Ce, Pr, Nd. The structure of LaBO2MoO4 was redetermined by Zhao et al. (2008), who reported a centrosymmetric structure with space group symmetry P21/c with lattice constants a = 10.2968 (8) Å, b = 4.1636 (3) Å, c = 23.8587 (15) Å, β = 115.367 (3)°. These results were corroborated by Zhao et al. (2009), who, however, attributed this crystal structure to a high-temperature modification of LaBO2MoO4. The occurrence of a structural phase transition of LaBO2MoO4 was reported by Becker et al. (2008). Zhao et al. (2008) also presented the crystal structure of the related cerium compound, CeBO2MoO4, with space group P21/c and lattice constants a = 10.2404 (15) Å. b = 4.1495 (4) Å, c = 11.9286 (14) Å, β = 116.100 (9)°, and thus showed, that the presumed isomorphism of the lanthanum and the cerium compound is not correct. However, the crystal structures are closely related, with an unit cell of LaBO2MoO4 which is doubled with respect to the unit cell of CeBO2MoO4. The result of the present study shows, that also NdBO2MoO4 is not isomorphic to LaBO2MoO4, but is isomorphic to CeBO2MoO4.

The crystal structure of NdBO2MoO4 consists of groups [BO3] and [MoO4] and tenfold coordinated neodymium atoms. The [BO3] groups are connected via common oxygen ligands to zigzag chains [B2O4] along the b axis, with a periodicity of two [BO3] groups. The planar [BO3] groups are slightly distorted with O—B—O angles of 114.4 (4)°, 117.4 (4)° and 128.1 (4)°. They are linked by the common oxygen atom O1 with a bond angle B – O1 – B of 125.6 (3)° (see Fig. 1). The O1 ligands are connected to two boron atoms and one Nd atom, each, while the O2 ligands of the [BO3] groups are linked to three Nd atoms and one B, each. Mo atoms are tetrahedrally coordinated by the oxygen atoms O3, O4, O5 and O6 (see Fig. 1), with Mo—O distances ranging from 1.740 (4) Å (Mo—O3) to 1.816 (3) Å (Mo—O4) and angles O—Mo—O ranging from 96.3 (2)° (O4—Mo—O3) to 117.5 (2)° (O4—Mo—O6). The [MoO4] tetrahedra are arranged in rows that run parallel the b axis. Within a single row the [MoO4] tetrahedra are aligned with their Mo–O3 bonding directions pointing in the same direction approximately parallel to the b axis. Rows with opposite Mo–O3 bonding direction (+b and -b) alternate along the c axis, as shown in Fig. 2. Within a row the distance of a Mo atom to the O3 ligand of the neighbouring tetrahedron amounts 2.419 (3) Å. (Note that in Zhao et al. (2008) a distorted trigonal bipyramid is preferred as description of the coordination surrounding of Mo in CeBO2MoO4.) The oxygen atoms O3 and O5 serve as ligands of one Mo and one Nd atom, each, while the oxygen atoms O6 and O4 act as ligands for one Mo and two Nd atoms, each. The tenfold coordination of neodymium atoms in NdBO2MoO4 can be described as distorted bicapped square antiprism with Nd—O bonding distances ranging between 2.364 (3) Å (Nd—O2) and 2.981 (4) Å (Nd—O6). [NdO10] polyhedra are connected along the b axis by sharing three common oxygen ligands, namely O2, O6 and O4 (Fig. 1), with each neighbouring polyhedron, thus forming chains along the b axis. Two parallel chains are linked via edges (formed by two common O2 atoms) of the Nd coordination polyhedra, resulting in a double chain along b, see Fig. 2.

Experimental

NdBO2MoO4 melts incongruently, therefore, single crystals of NdBO2MoO4 were grown from a melt with a composition differing from the crystal stoichiometry. A homogenized powder mixture of Nd2O3 (99.9%, Alfa Aesar), B2O3 (99.98%, Alfa Aesar) and MoO3 (99,95%, Alfa Aesar) in a molar ratio of 1: 1.375: 2.625 was heated in a covered platinum crucible in air atmosphere to 1423 K and subsequently cooled at a rate of 3 K h-1 to 1173 K. Transparent violet prismatic crystals of the title compound were separated mechanically from the surrounding flux. A suitable single-crystal was carefully selected using a polarizing microscope and mounted in a glass capillary.

Refinement

The final difference maps indicate a maximum of 2.235 e Å-3 at a distance of 0.66 Å from Nd and a minimum of -1.611 e Å-3 at a distance of 1.06 Å of Nd.

Figures

Fig. 1.

Fig. 1.

The structural units in NdBO2MoO4 with atomic numbering scheme (projection approximately along the b-axis). Atoms are drawn as 50% probability ellipsoids. Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z - 1; (iii) -x, -y, -z - 1; (iv) -x + 1, -y, -z - 1; (v) -x + 1, y - 1/2, -z - 1/2; (vi) -x + 1, -y + 1, -z - 1; (vii) -x + 1, y + 1/2, -z - 1/2; (viii) x, y - 1, z; (ix) -x, y - 1/2, -z - 1/2; (x) -x, y + 1/2, -z - 1/2; (xi) x, -y + 1/2, z + 1/2; (xii) x, -y - 1/2, z - 1/2; (xiii) x, 3/2 - y, z - 1/2; (xiv) 1 - x, 1/2 + y, z - 1/2.

Fig. 2.

Fig. 2.

View of the crystal structure of NdBO2MoO4 along the b axis, showing chains of corner-sharing [BO3] groups (green), double-chains of face- and edge-sharing [NdO10] polyhedra (purple), and rows of isolated [MoO4] tetrahedra (orange), all of them running along the b axis. In a single row, [MoO4] tetrahedra are arranged with identical orientation, thus giving a polarity +b or -b to the row. Note the alternating polarity of the arrangement of [MoO4] tetrahedra rows along the c axis.

Crystal data

NdMoBO6 F(000) = 620
Mr = 346.99 Dx = 5.182 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 10.1218 (19) Å θ = 12.1–21.2°
b = 4.1420 (5) Å µ = 14.30 mm1
c = 11.896 (3) Å T = 292 K
β = 116.897 (14)° Prism, light violet
V = 444.78 (16) Å3 0.30 × 0.20 × 0.15 mm
Z = 4

Data collection

Enraf–Nonius CAD4/MACH3 diffractometer 1268 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
graphite θmax = 30.4°, θmin = 2.3°
ω/2θ scans h = −14→14
Absorption correction: ψ scan (MolEN; Fair, 1990) k = −5→5
Tmin = 0.487, Tmax = 0.998 l = −16→16
5004 measured reflections 3 standard reflections every 100 reflections
1344 independent reflections intensity decay: 2.1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0304P)2 + 1.8082P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063 (Δ/σ)max < 0.001
S = 1.22 Δρmax = 2.24 e Å3
1344 reflections Δρmin = −1.61 e Å3
83 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0428 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 is done against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >2 σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Nd 0.19204 (2) 0.21132 (6) −0.47183 (2) 0.00919 (11)
Mo 0.64536 (4) 0.30466 (8) −0.31742 (3) 0.00668 (12)
B −0.0028 (7) 0.3290 (12) −0.3083 (5) 0.0182 (10)
O1 −0.0326 (4) 0.6580 (8) −0.3013 (3) 0.0120 (6)
O2 −0.0035 (3) 0.2247 (7) −0.4150 (3) 0.0099 (5)
O3 0.6616 (4) 0.7223 (8) −0.3016 (4) 0.0173 (7)
O4 0.2605 (4) −0.2856 (7) −0.3501 (3) 0.0124 (6)
O5 0.4556 (4) 0.2256 (9) −0.3956 (3) 0.0156 (6)
O6 0.7424 (4) 0.2194 (9) −0.4084 (4) 0.0190 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Nd 0.00733 (14) 0.00900 (16) 0.00992 (14) −0.00094 (6) 0.00274 (10) −0.00205 (7)
Mo 0.00602 (17) 0.0087 (2) 0.00546 (17) −0.00022 (10) 0.00270 (13) −0.00094 (10)
B 0.040 (3) 0.007 (2) 0.013 (2) 0.0020 (19) 0.017 (2) −0.0003 (17)
O1 0.0259 (16) 0.0056 (13) 0.0050 (12) −0.0010 (11) 0.0074 (12) −0.0004 (10)
O2 0.0108 (13) 0.0118 (14) 0.0084 (13) −0.0018 (10) 0.0055 (11) −0.0021 (10)
O3 0.0203 (16) 0.0125 (15) 0.0199 (16) 0.0003 (12) 0.0099 (14) −0.0002 (12)
O4 0.0173 (15) 0.0091 (14) 0.0067 (13) −0.0007 (10) 0.0018 (12) −0.0017 (10)
O5 0.0066 (12) 0.0235 (17) 0.0137 (15) −0.0009 (11) 0.0019 (11) −0.0008 (12)
O6 0.0271 (18) 0.0192 (17) 0.0207 (17) −0.0024 (13) 0.0197 (15) −0.0039 (13)

Geometric parameters (Å, °)

Nd—O2 2.364 (3) B—O2 1.338 (6)
Nd—O5 2.399 (3) B—O1ix 1.381 (6)
Nd—O4 2.431 (3) B—O1 1.406 (6)
Nd—O4i 2.452 (3) B—Ndii 3.099 (6)
Nd—O1ii 2.498 (3) B—Ndiii 3.315 (6)
Nd—O2iii 2.528 (3) O1—Bx 1.381 (6)
Nd—O6iv 2.551 (3) O1—Ndii 2.498 (3)
Nd—O3v 2.901 (4) O2—Ndiii 2.528 (3)
Nd—O2ii 2.930 (3) O2—Ndii 2.930 (3)
Nd—O6vi 2.981 (4) O3—Moi 2.419 (3)
Mo—O3 1.740 (4) O3—Ndvii 2.901 (4)
Mo—O5 1.745 (3) O4—Mov 1.816 (3)
Mo—O6 1.795 (3) O4—Ndviii 2.452 (3)
Mo—O4vii 1.816 (3) O6—Ndiv 2.551 (3)
Mo—O3viii 2.419 (3) O6—Ndvi 2.981 (4)
Mo—Ndvii 3.5017 (8)
O2—Nd—O5 145.40 (12) O4vii—Mo—Ndvi 128.02 (11)
O2—Nd—O4 84.21 (11) O3viii—Mo—Ndvi 120.27 (9)
O5—Nd—O4 80.04 (12) Ndvii—Mo—Ndvi 103.052 (17)
O2—Nd—O4i 81.98 (11) Ndv—Mo—Ndvi 135.816 (15)
O5—Nd—O4i 77.71 (12) O3—Mo—Nd 99.98 (12)
O4—Nd—O4i 116.06 (13) O5—Mo—Nd 7.61 (12)
O2—Nd—O1ii 95.08 (11) O6—Mo—Nd 121.06 (13)
O5—Nd—O1ii 117.89 (12) O4vii—Mo—Nd 113.32 (11)
O4—Nd—O1ii 134.27 (11) O3viii—Mo—Nd 87.93 (9)
O4i—Nd—O1ii 109.02 (10) Ndvii—Mo—Nd 114.650 (15)
O2—Nd—O2iii 68.97 (12) Ndv—Mo—Nd 105.813 (15)
O5—Nd—O2iii 131.40 (11) Ndvi—Mo—Nd 116.653 (16)
O4—Nd—O2iii 69.84 (11) O3—Mo—Ndiv 122.17 (12)
O4i—Nd—O2iii 149.91 (11) O5—Mo—Ndiv 102.87 (12)
O1ii—Nd—O2iii 67.44 (11) O6—Mo—Ndiv 20.25 (12)
O2—Nd—O6iv 129.71 (11) O4vii—Mo—Ndiv 113.64 (11)
O5—Nd—O6iv 72.70 (12) O3viii—Mo—Ndiv 60.20 (9)
O4—Nd—O6iv 70.40 (12) Ndvii—Mo—Ndiv 134.533 (16)
O4i—Nd—O6iv 148.09 (12) Ndv—Mo—Ndiv 94.773 (16)
O1ii—Nd—O6iv 75.67 (12) Ndvi—Mo—Ndiv 60.259 (12)
O2iii—Nd—O6iv 61.79 (10) Nd—Mo—Ndiv 110.359 (15)
O2—Nd—O3v 75.40 (11) O2—B—O1ix 128.1 (4)
O5—Nd—O3v 70.07 (11) O2—B—O1 117.4 (4)
O4—Nd—O3v 58.78 (10) O1ix—B—Ndii 155.4 (4)
O4i—Nd—O3v 57.31 (10) O1ix—B—Ndiii 102.0 (3)
O1ii—Nd—O3v 163.84 (10) O1—B—Ndiii 129.6 (4)
O2iii—Nd—O3v 119.20 (10) Ndii—B—Ndiii 80.37 (14)
O6iv—Nd—O3v 120.47 (11) O1ix—B—Nd 120.0 (3)
O2—Nd—O2ii 69.96 (11) O1—B—Nd 111.8 (3)
O5—Nd—O2ii 122.40 (10) Ndii—B—Nd 84.34 (13)
O4—Nd—O2ii 154.13 (10) Ndiii—B—Nd 74.17 (11)
O4i—Nd—O2ii 62.95 (10) O2—B—Ndxi 144.1 (4)
O1ii—Nd—O2ii 50.40 (10) O1—B—Ndxi 90.2 (3)
O2iii—Nd—O2ii 98.46 (10) Ndii—B—Ndxi 142.25 (16)
O6iv—Nd—O2ii 125.50 (11) Ndiii—B—Ndxi 132.90 (16)
O3v—Nd—O2ii 113.50 (9) Nd—B—Ndxi 117.93 (18)
O2—Nd—O6vi 120.96 (10) Bx—O1—B 125.6 (3)
O5—Nd—O6vi 73.22 (11) Bx—O1—Ndii 132.3 (3)
O4—Nd—O6vi 152.84 (11) B—O1—Ndii 101.4 (3)
O4i—Nd—O6vi 62.98 (10) Bx—O1—Ndxi 57.4 (2)
O1ii—Nd—O6vi 59.13 (11) B—O1—Ndxi 68.4 (3)
O2iii—Nd—O6vi 126.02 (10) Ndii—O1—Ndxi 169.04 (12)
O6iv—Nd—O6vi 96.66 (11) Bx—O1—Nd 137.1 (3)
O3v—Nd—O6vi 114.35 (10) B—O1—Nd 49.7 (3)
O2ii—Nd—O6vi 52.35 (9) Ndii—O1—Nd 78.20 (8)
O3—Mo—O5 105.76 (17) Ndxi—O1—Nd 96.89 (8)
O3—Mo—O6 102.12 (17) B—O2—Nd 129.3 (3)
O5—Mo—O6 114.36 (17) B—O2—Ndiii 114.5 (3)
O3—Mo—O4vii 96.26 (16) Nd—O2—Ndiii 111.03 (12)
O5—Mo—O4vii 116.79 (16) B—O2—Ndii 84.3 (3)
O6—Mo—O4vii 117.52 (17) Nd—O2—Ndii 110.04 (11)
O3—Mo—O3viii 169.5 (2) Ndiii—O2—Ndii 98.46 (10)
O5—Mo—O3viii 82.75 (15) Mo—O3—Moi 169.5 (2)
O6—Mo—O3viii 79.30 (15) Mo—O3—Ndvii 94.65 (15)
O4vii—Mo—O3viii 74.10 (13) Moi—O3—Ndvii 94.88 (12)
O3—Mo—Ndvii 55.67 (13) Mo—O3—Ndvi 92.60 (14)
O5—Mo—Ndvii 121.91 (12) Moi—O3—Ndvi 84.42 (10)
O6—Mo—Ndvii 123.02 (13) Ndvii—O3—Ndvi 131.41 (12)
O4vii—Mo—Ndvii 40.63 (10) Mov—O4—Nd 110.25 (14)
O3viii—Mo—Ndvii 114.71 (9) Mov—O4—Ndviii 133.69 (16)
O3—Mo—Ndv 123.03 (13) Nd—O4—Ndviii 116.06 (13)
O5—Mo—Ndv 105.84 (12) Mov—O4—Ndiii 117.45 (14)
O6—Mo—Ndv 106.15 (13) Nd—O4—Ndiii 71.19 (8)
O4vii—Mo—Ndv 26.80 (10) Ndviii—O4—Ndiii 78.89 (8)
O3viii—Mo—Ndv 47.32 (9) Mo—O5—Nd 166.9 (2)
Ndvii—Mo—Ndv 67.430 (16) Mo—O6—Ndiv 145.65 (19)
O3—Mo—Ndvi 62.27 (12) Mo—O6—Ndvi 115.69 (16)
O5—Mo—Ndvi 114.60 (12) Ndiv—O6—Ndvi 96.66 (11)
O6—Mo—Ndvi 41.02 (12)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z−1; (iii) −x, −y, −z−1; (iv) −x+1, −y, −z−1; (v) −x+1, y−1/2, −z−1/2; (vi) −x+1, −y+1, −z−1; (vii) −x+1, y+1/2, −z−1/2; (viii) x, y−1, z; (ix) −x, y−1/2, −z−1/2; (x) −x, y+1/2, −z−1/2; (xi) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2107).

References

  1. Becker, P., van der Wolf, B., Bohatý, L., Dong, J. & Kaminskii, A. A. (2008). Laser Phys. Lett. 5, 737–745.
  2. Dowty, E. (2002). ATOMS Shape Software, Kingsport, Tennessee, USA.
  3. Dzhurinskii, B. F. & Lysanova, G. V. (1998). Russ. J. Inorg. Chem. 43, 1931–1940.
  4. Enraf–Nonius (1993). MACH3 Server Software Enraf–Nonius, Delft, The Netherlands.
  5. Fair, C. K. (1990). MolEN Enraf-Nonius, Delft, The Netherlands.
  6. Lysanova, G. V., Dzhurinskii, B. F., Komova, M. G. & Tananaev, I. V. (1983). Russ. J. Inorg. Chem. 28, 1344–1349.
  7. Palkina, K. K., Saifuddinov, V. Z., Kuznetsov, V. G., Dzhurinskii, B. F., Lysanova, G. V. & Reznik, E. M. (1979). Russ. J. Inorg. Chem. 24, 663–666.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Zhao, D., Cheng, W.-D., Zhang, H., Hang, S.-P. & Fang, M. (2008). Dalton Trans. pp. 3709–3714. [DOI] [PubMed]
  11. Zhao, W., Zhang, L., Wang, G., Song, M., Huang, Y. & Wang, G. (2009). Opt. Mater. 31, 849–853.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811017806/fi2107sup1.cif

e-67-00i36-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017806/fi2107Isup2.hkl

e-67-00i36-Isup2.hkl (66.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES