Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):m683–m684. doi: 10.1107/S1600536811015145

Aqua­(2,2′-diamino-4,4′-bi-1,3-thia­zole-κ2 N 3,N 3′)(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)zinc tetra­hydrate

Yan-Li Wang a, Guang-Jun Chang a, Bing-Xin Liu a,*
PMCID: PMC3120585  PMID: 21754591

Abstract

The title compound, [Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O, assumes a distorted octa­hedral coordination geometry around the Zn2+ cation, formed by a diamino­bithia­zole (DABT) mol­ecule, a pyridine-2,6-dicarboxyl­ate anion and a water mol­ecule. The pyridine-2,6-dicarboxyl­ate anion chelates to the ZnII atom with a facial configuration. Within the chelating DABT ligand, the two thia­zole rings are twisted by a dihedral angle of 14.52 (8)° with respect to each other. O—H⋯O and N—H⋯O hydrogen bonds occur in the crystal structure.

Related literature

For potential applications of transition metal complexes of 2,2′-diamino-4,4′-bi-1,3-thia­zole (DABT), see: Sun et al. (1997). For general background to metal complexes with DABT, see: Liu et al. (2003). For related structures, see: Liu & Xu (2004, 2005); Liu et al. (2005).graphic file with name e-67-0m683-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O

  • M r = 518.82

  • Monoclinic, Inline graphic

  • a = 10.0529 (19) Å

  • b = 7.0833 (13) Å

  • c = 27.720 (6) Å

  • β = 93.960 (3)°

  • V = 1969.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.701, T max = 0.796

  • 9851 measured reflections

  • 3471 independent reflections

  • 2238 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.119

  • S = 1.03

  • 3471 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015145/ff2006sup1.cif

e-67-0m683-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015145/ff2006Isup2.hkl

e-67-0m683-Isup2.hkl (166.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn—N21 2.064 (4)
Zn—N11 2.092 (4)
Zn—N13 2.129 (4)
Zn—O1 2.213 (3)
Zn—O23 2.232 (4)
Zn—O21 2.260 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O22i 0.97 1.84 2.778 (5) 163
O1—H1B⋯O1W 0.96 1.87 2.827 (6) 174
O1W—H1WA⋯O4Wii 0.91 2.10 2.812 (6) 134
O1W—H1WB⋯O2Wi 0.80 2.10 2.775 (6) 142
O2W—H2WA⋯O22 0.82 1.93 2.692 (6) 155
O2W—H2WB⋯O4Wiii 0.86 1.97 2.830 (6) 178
O3W—H3WA⋯O24 0.94 1.94 2.880 (6) 174
O3W—H3WB⋯O24iv 0.96 1.80 2.694 (6) 153
O4W—H4WA⋯O2Wii 0.91 2.02 2.863 (6) 153
O4W—H4WB⋯O3W 0.88 1.92 2.783 (6) 167
N12—H12A⋯O1 0.97 2.00 2.873 (6) 149
N12—H12B⋯O21v 0.83 2.19 2.984 (5) 161
N14—H14A⋯O3Wvi 0.88 2.44 3.043 (6) 126
N14—H14B⋯O1Wvii 0.86 2.19 3.022 (6) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The project was supported by the Foundation of Shanghai University, China.

supplementary crystallographic information

Comment

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997). As part of serial structural investigation of metal complexes with DABT (Liu et al., 2003), the title ZnII complex was recently prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordinatation geometry formed by a DABT ligand, a pyridine-2,6-dicarboxylate anion and a coordinated water molecule.

Thiazole rings of DABT are not coplanar as same as in other complexes we have reported, the dihedral angle between the two thiazole rings is 14.51 (8) °. It is similar to the 17.23 (7) ° found in [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl.H2O, (Liu & Xu, 2004). The distances of C16—N14 [1.335 (4) Å] and C16—N13[1.324 (4) Å] imply the existence of electron delocalization between thiazole rings and amino groups. This feature of electron delocalization of DABT can be found in some DABT complexes of Mn(II) (Liu & Xu, 2005), Co(II) (Liu et al., 2005), we have reported. The tridentate pyridine-2,6-dicarboxylate anion chelates to the ZnII atom with a facial configuration with the maximum atomic deviation of 0.082 (3) Å (N21) to the main plane defined by C21 C22 C23 C24 C25 C26 C27 N21 O21 O22 O23 O24.

The extensive hydrogen bonding between lattice water molecules, complex and lattice water helps to stabilize the crystal structure as shown in Fig. 2. and Table 1.

Experimental

An aqueous solution (20 ml) containing DABT (1 mmol) and ZnCl2 (1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,6-dicarboxylic acid (1 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. After cooling to room temperature the solution was filtered. Single crystals of (I) were obtained from the filtrate after 10 d.

Refinement

H atoms on carbon atoms were placed in calculated positions, with C—H distances = 0.93 Å (aromatic), and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq of the carrier atoms. H atoms of amino group of DABT, coordinated water and lattice water were located in a difference Fourier map and included in the structure factor calculations with fixed positional and isotropic displacement parameters Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O) of the carrier atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding within the complex.

Fig. 2.

Fig. 2.

The hydrogen bonding diagram with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines indicate the hydrogen bonding.

Crystal data

[Zn(C7H3NO4)(C6H6N4S2)(H2O)]·4H2O F(000) = 1064
Mr = 518.82 Dx = 1.750 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3380 reflections
a = 10.0529 (19) Å θ = 2.0–25.0°
b = 7.0833 (13) Å µ = 1.52 mm1
c = 27.720 (6) Å T = 295 K
β = 93.960 (3)° Prism, yellow
V = 1969.2 (7) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 3471 independent reflections
Radiation source: fine-focus sealed tube 2238 reflections with I > 2σ(I)
graphite Rint = 0.074
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 2.4°
ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −8→8
Tmin = 0.701, Tmax = 0.796 l = −22→32
9851 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0374P)2 + 1.648P] where P = (Fo2 + 2Fc2)/3
3471 reflections (Δ/σ)max < 0.001
281 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.79367 (6) 0.53096 (9) 0.32687 (2) 0.0278 (2)
O1 0.6001 (3) 0.3881 (5) 0.33361 (13) 0.0323 (9)
H1A 0.6206 0.2602 0.3443 0.031 (15)*
H1B 0.5456 0.4465 0.3567 0.06 (2)*
O21 0.6938 (3) 0.8166 (5) 0.32814 (13) 0.0322 (9)
O22 0.6230 (4) 1.0365 (5) 0.37777 (13) 0.0352 (9)
O23 0.8776 (4) 0.2804 (5) 0.36725 (13) 0.0330 (9)
O24 0.9366 (4) 0.1804 (6) 0.44238 (14) 0.0460 (11)
N11 0.7611 (4) 0.5270 (6) 0.25153 (14) 0.0249 (10)
N12 0.5302 (4) 0.4822 (7) 0.23428 (16) 0.0401 (13)
H12A 0.5190 0.4432 0.2673 0.048*
H12B 0.4789 0.4457 0.2116 0.048*
N13 0.9917 (4) 0.5795 (6) 0.30709 (15) 0.0270 (11)
N14 1.1350 (4) 0.5784 (7) 0.37784 (17) 0.0434 (13)
H14A 1.0773 0.6054 0.3991 0.052*
H14B 1.2189 0.5943 0.3857 0.052*
N21 0.7907 (4) 0.6039 (6) 0.39887 (15) 0.0238 (10)
S11 0.68935 (14) 0.5508 (2) 0.16108 (5) 0.0368 (4)
S12 1.23955 (13) 0.5564 (2) 0.29119 (5) 0.0348 (4)
C11 0.8759 (5) 0.5611 (7) 0.22697 (18) 0.0250 (12)
C12 0.8558 (5) 0.5786 (8) 0.1793 (2) 0.0333 (14)
H12 0.9225 0.6026 0.1585 0.040*
C13 0.6547 (5) 0.5153 (7) 0.22092 (18) 0.0265 (12)
C14 1.0006 (5) 0.5681 (7) 0.25667 (19) 0.0255 (12)
C15 1.1253 (5) 0.5557 (8) 0.2422 (2) 0.0323 (13)
H15 1.1467 0.5478 0.2102 0.039*
C16 1.1095 (5) 0.5723 (8) 0.3291 (2) 0.0306 (13)
C21 0.7370 (5) 0.7687 (7) 0.41205 (18) 0.0243 (12)
C22 0.7300 (6) 0.8163 (8) 0.45964 (19) 0.0348 (14)
H22 0.6938 0.9313 0.4682 0.042*
C23 0.7783 (6) 0.6894 (8) 0.4950 (2) 0.0364 (14)
H23 0.7755 0.7193 0.5276 0.044*
C24 0.8303 (5) 0.5195 (7) 0.4814 (2) 0.0324 (14)
H24 0.8614 0.4324 0.5046 0.039*
C25 0.8355 (5) 0.4801 (7) 0.43272 (19) 0.0270 (12)
C26 0.6810 (5) 0.8848 (8) 0.3697 (2) 0.0287 (13)
C27 0.8889 (5) 0.2973 (7) 0.4127 (2) 0.0298 (13)
O1W 0.4314 (4) 0.5366 (7) 0.40173 (16) 0.0453 (11)
H1WA 0.4454 0.6614 0.4085 0.06 (2)*
H1WB 0.4538 0.4785 0.4256 0.08 (3)*
O2W 0.5018 (4) 1.2043 (6) 0.45001 (16) 0.0533 (12)
H2WA 0.5563 1.1778 0.4303 0.06 (2)*
H2WB 0.5413 1.1846 0.4782 0.05 (2)*
O3W 0.9102 (4) 0.1298 (5) 0.54438 (17) 0.0485 (12)
H3WA 0.9229 0.1380 0.5111 0.11 (3)*
H3WB 0.9730 0.0390 0.5580 0.051 (18)*
O4W 0.6334 (4) 0.1492 (6) 0.54252 (14) 0.0465 (11)
H4WA 0.6074 0.0351 0.5539 0.14 (4)*
H4WB 0.7192 0.1338 0.5388 0.05 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.0276 (4) 0.0333 (4) 0.0226 (4) 0.0023 (3) 0.0028 (3) 0.0000 (3)
O1 0.034 (2) 0.032 (2) 0.031 (2) 0.0021 (18) 0.0031 (18) 0.0038 (18)
O21 0.034 (2) 0.040 (2) 0.022 (2) 0.0082 (18) −0.0013 (17) 0.0010 (18)
O22 0.045 (2) 0.024 (2) 0.037 (2) 0.0128 (19) 0.0054 (19) 0.0033 (18)
O23 0.037 (2) 0.028 (2) 0.035 (2) 0.0057 (17) 0.0031 (19) −0.0012 (18)
O24 0.065 (3) 0.033 (2) 0.040 (3) 0.022 (2) 0.004 (2) 0.005 (2)
N11 0.025 (2) 0.027 (3) 0.022 (2) 0.001 (2) 0.0027 (19) 0.003 (2)
N12 0.030 (3) 0.065 (4) 0.024 (3) 0.000 (3) −0.003 (2) 0.001 (2)
N13 0.022 (2) 0.031 (3) 0.028 (3) −0.0009 (19) 0.003 (2) 0.000 (2)
N14 0.023 (3) 0.073 (4) 0.035 (3) −0.003 (2) 0.004 (2) −0.002 (3)
N21 0.021 (2) 0.026 (3) 0.024 (3) 0.0024 (19) 0.0020 (19) 0.000 (2)
S11 0.0403 (9) 0.0476 (10) 0.0221 (8) 0.0015 (7) −0.0013 (6) 0.0025 (7)
S12 0.0238 (7) 0.0401 (9) 0.0412 (9) 0.0012 (6) 0.0064 (7) 0.0010 (7)
C11 0.026 (3) 0.025 (3) 0.024 (3) 0.000 (2) 0.002 (2) −0.005 (2)
C12 0.036 (3) 0.038 (4) 0.027 (3) −0.002 (3) 0.008 (3) 0.002 (3)
C13 0.028 (3) 0.029 (3) 0.023 (3) 0.006 (2) 0.002 (2) −0.007 (2)
C14 0.031 (3) 0.021 (3) 0.025 (3) 0.003 (2) 0.004 (2) −0.002 (2)
C15 0.036 (3) 0.035 (3) 0.027 (3) 0.000 (3) 0.011 (3) 0.003 (3)
C16 0.030 (3) 0.033 (3) 0.030 (3) −0.001 (3) 0.004 (3) 0.001 (3)
C21 0.027 (3) 0.024 (3) 0.022 (3) 0.000 (2) 0.002 (2) −0.001 (2)
C22 0.044 (4) 0.031 (3) 0.029 (3) 0.013 (3) 0.004 (3) −0.003 (3)
C23 0.046 (4) 0.043 (4) 0.020 (3) 0.006 (3) 0.007 (3) −0.001 (3)
C24 0.044 (3) 0.026 (3) 0.027 (3) 0.011 (3) 0.003 (3) 0.006 (3)
C25 0.027 (3) 0.025 (3) 0.029 (3) 0.000 (2) 0.004 (2) 0.006 (3)
C26 0.027 (3) 0.027 (3) 0.032 (4) −0.006 (3) 0.003 (3) −0.003 (3)
C27 0.034 (3) 0.019 (3) 0.038 (4) 0.001 (2) 0.006 (3) 0.002 (3)
O1W 0.045 (3) 0.046 (3) 0.044 (3) 0.007 (2) 0.001 (2) −0.001 (2)
O2W 0.059 (3) 0.067 (3) 0.035 (3) 0.023 (2) 0.010 (3) 0.010 (2)
O3W 0.054 (3) 0.040 (3) 0.052 (3) 0.021 (2) 0.008 (2) 0.006 (2)
O4W 0.050 (3) 0.050 (3) 0.040 (3) 0.004 (2) 0.006 (2) −0.002 (2)

Geometric parameters (Å, °)

Zn—N21 2.064 (4) S11—C13 1.737 (5)
Zn—N11 2.092 (4) S12—C15 1.717 (6)
Zn—N13 2.129 (4) S12—C16 1.736 (5)
Zn—O1 2.213 (3) C11—C12 1.328 (7)
Zn—O23 2.232 (4) C11—C14 1.452 (7)
Zn—O21 2.260 (4) C12—H12 0.9300
O1—H1A 0.9713 C14—C15 1.346 (7)
O1—H1B 0.9633 C15—H15 0.9300
O21—C26 1.264 (6) C21—C22 1.368 (7)
O22—C26 1.250 (6) C21—C26 1.510 (7)
O23—C27 1.264 (6) C22—C23 1.393 (7)
O24—C27 1.239 (6) C22—H22 0.9300
N11—C13 1.321 (6) C23—C24 1.375 (7)
N11—C11 1.401 (6) C23—H23 0.9300
N12—C13 1.351 (6) C24—C25 1.382 (7)
N12—H12A 0.9708 C24—H24 0.9300
N12—H12B 0.8256 C25—C27 1.521 (7)
N13—C16 1.294 (7) O1W—H1WA 0.9122
N13—C14 1.409 (6) O1W—H1WB 0.7978
N14—C16 1.359 (7) O2W—H2WA 0.8216
N14—H14A 0.8749 O2W—H2WB 0.8624
N14—H14B 0.8645 O3W—H3WA 0.9418
N21—C25 1.339 (6) O3W—H3WB 0.9604
N21—C21 1.347 (6) O4W—H4WA 0.9116
S11—C12 1.725 (6) O4W—H4WB 0.8825
N21—Zn—N11 163.19 (16) C11—C12—S11 111.1 (4)
N21—Zn—N13 106.55 (16) C11—C12—H12 124.5
N11—Zn—N13 80.18 (16) S11—C12—H12 124.5
N21—Zn—O1 87.78 (14) N11—C13—N12 124.0 (5)
N11—Zn—O1 90.03 (15) N11—C13—S11 113.4 (4)
N13—Zn—O1 159.90 (15) N12—C13—S11 122.5 (4)
N21—Zn—O23 75.18 (15) C15—C14—N13 115.0 (5)
N11—Zn—O23 121.17 (15) C15—C14—C11 127.9 (5)
N13—Zn—O23 85.97 (15) N13—C14—C11 117.0 (4)
O1—Zn—O23 84.17 (13) C14—C15—S12 110.5 (4)
N21—Zn—O21 74.03 (14) C14—C15—H15 124.7
N11—Zn—O21 89.34 (14) S12—C15—H15 124.7
N13—Zn—O21 106.47 (15) N13—C16—N14 124.8 (5)
O1—Zn—O21 90.79 (14) N13—C16—S12 114.8 (4)
O23—Zn—O21 148.96 (13) N14—C16—S12 120.4 (4)
Zn—O1—H1A 106.4 N21—C21—C22 121.6 (5)
Zn—O1—H1B 113.8 N21—C21—C26 113.3 (4)
H1A—O1—H1B 108.5 C22—C21—C26 125.0 (5)
C26—O21—Zn 115.4 (3) C21—C22—C23 118.7 (5)
C27—O23—Zn 115.5 (3) C21—C22—H22 120.6
C13—N11—C11 110.9 (4) C23—C22—H22 120.6
C13—N11—Zn 134.9 (3) C24—C23—C22 119.5 (5)
C11—N11—Zn 113.9 (3) C24—C23—H23 120.3
C13—N12—H12A 118.5 C22—C23—H23 120.3
C13—N12—H12B 112.8 C23—C24—C25 119.1 (5)
H12A—N12—H12B 121.5 C23—C24—H24 120.5
C16—N13—C14 110.3 (4) C25—C24—H24 120.5
C16—N13—Zn 135.5 (4) N21—C25—C24 121.2 (5)
C14—N13—Zn 111.7 (3) N21—C25—C27 114.3 (5)
C16—N14—H14A 126.0 C24—C25—C27 124.5 (5)
C16—N14—H14B 111.6 O22—C26—O21 124.7 (5)
H14A—N14—H14B 118.9 O22—C26—C21 118.9 (5)
C25—N21—C21 119.9 (4) O21—C26—C21 116.4 (5)
C25—N21—Zn 119.2 (3) O24—C27—O23 127.1 (5)
C21—N21—Zn 120.8 (3) O24—C27—C25 117.2 (5)
C12—S11—C13 89.5 (3) O23—C27—C25 115.7 (5)
C15—S12—C16 89.3 (3) H1WA—O1W—H1WB 107.4
C12—C11—N11 115.2 (5) H2WA—O2W—H2WB 106.1
C12—C11—C14 128.9 (5) H3WA—O3W—H3WB 107.3
N11—C11—C14 116.0 (4) H4WA—O4W—H4WB 103.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O22i 0.97 1.84 2.778 (5) 163
O1—H1B···O1W 0.96 1.87 2.827 (6) 174
O1W—H1WA···O4Wii 0.91 2.10 2.812 (6) 134
O1W—H1WB···O2Wi 0.80 2.10 2.775 (6) 142
O2W—H2WA···O22 0.82 1.93 2.692 (6) 155
O2W—H2WB···O4Wiii 0.86 1.97 2.830 (6) 178
O3W—H3WA···O24 0.94 1.94 2.880 (6) 174
O3W—H3WB···O24iv 0.96 1.80 2.694 (6) 153
O4W—H4WA···O2Wii 0.91 2.02 2.863 (6) 153
O4W—H4WB···O3W 0.88 1.92 2.783 (6) 167
N12—H12A···O1 0.97 2.00 2.873 (6) 149
N12—H12B···O21v 0.83 2.19 2.984 (5) 161
N14—H14A···O3Wvi 0.88 2.44 3.043 (6) 126
N14—H14B···O1Wvii 0.86 2.19 3.022 (6) 162

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+2, −y, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) −x+2, −y+1, −z+1; (vii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2006).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Liu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137–m139. [DOI] [PubMed]
  6. Liu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, m1978–m1980.
  7. Liu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m2011–m2013.
  8. Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sun, W. L., Gao, X. S. & Lu, F. C. (1997). J. Appl. Polym. Sci. 64, 2309–2315.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015145/ff2006sup1.cif

e-67-0m683-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015145/ff2006Isup2.hkl

e-67-0m683-Isup2.hkl (166.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES