Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):o1478. doi: 10.1107/S1600536811018538

1,4-Bis[2-(prop-1-en­yl)phen­oxy]butane

Musa R Bayramov a, Abel M Maharramov a, Gunay M Mehdiyeva a,*, Shahnaz B Hoseinzadeh a, Rizvan K Askerov a
PMCID: PMC3120590  PMID: 21754847

Abstract

The mol­ecule of the title compound, C22H26O2, exhibits Ci mol­ecular symmetry with a crystallographic inversion centre at the mid-point of the central C—C bond. A kink in the mol­ecule is defined by the torsion angle of 66.7 (2)° about this central bond of the alkyl bridge.

Related literature

For general background to the use of copolymerization reactions, see: Crivello et al. (1994); Roshupkin & Kurmaz (2004); Askadsky (1998).graphic file with name e-67-o1478-scheme1.jpg

Experimental

Crystal data

  • C22H26O2

  • M r = 322.43

  • Orthorhombic, Inline graphic

  • a = 5.4501 (10) Å

  • b = 15.825 (3) Å

  • c = 21.889 (4) Å

  • V = 1887.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.979, T max = 0.986

  • 20262 measured reflections

  • 2404 independent reflections

  • 1427 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.151

  • S = 1.01

  • 2404 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018538/kp2326sup1.cif

e-67-o1478-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018538/kp2326Isup2.hkl

e-67-o1478-Isup2.hkl (118.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018538/kp2326Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Victor N. Khrustalev for fruitful discussions and help in this work.

supplementary crystallographic information

Comment

For giving the important operationalisation to cross-linked polymers reactions of copolymerisation of various monomers, multifunctional comonomers [1] are used. By applying this method, the hi-tech processes for the preparation of polymeric sorbents, photorezisting materials for microelectronics, the composites for the laser technics of a special purposes, fixation of metalcomplex of catalysts, etc were obtained (Crivello et al. 1994). In practice, for obtaining polymers of demanded functional properties, polymerical transformations are carried out. However, it is necessary to notice, that obtaining such cross-linked copolymers have some difficulties connected with high reactivity of cross-linking comonomers (for example, divinylbenzene), which is reflected in heterogeneity of their structure and other important physical and chemical properties. Therefore, to prepare multifunctional monomers, on the basis of alkenylphenols with two double bonds, is rather important. The molecule of the title compound, C22H26O2 (I), is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A fold of the molecule is due to the twist in the central butylene bridge [O1—C10—C11—C11A torsion angle of 66.7 (2)°] (Fig. 1). Crystal packing is dominated by van der Waals interactions (Fig. 2).

Experimental

2-Propenylphenol (0.015 mol, 2 g) and KOH (0.015 mol, 0.84 g) were dissolved in 5 mL 2-propanol, then to this solution 1,4-dibromebutane (0.0043 mol, 0.93 g) was added. This mixture was stirred at 353 K within 30 min. The desired compounds (with yield of 4.7 g, 98.1%) was filtered and washed with acetone and recrystallised to obtain colourless crystals. Tmp = 353 K. The structure of the reported compound - 1,4-bis{2(1-propenyl)phenoxy}butane, also was proved by NMR-spectroscopy. FT-NMR (acetone-d6,, p.p.m.), 1H: 1.91 d (6H,CH3); 2.03 t (4H,CH2); 4.1 t (4H, OCH2); 6.15 m (2H, CH=); 6.65–7.1 m (8H, 2Ar); 7.32 d (2H,CH=). 13 C: 18.9; 26.3; 67.6; 112.8; 121.7; 124.9; 126.1; 127.2; 127.3; 127.5; 156.4.

Refinement

The hydrogen atoms were placed in calculated positions and refined in the riding mode with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Stacking of chains in the crystal packing.

Crystal data

C22H26O2 F(000) = 696
Mr = 322.43 Dx = 1.134 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4034 reflections
a = 5.4501 (10) Å θ = 2.6–23.1°
b = 15.825 (3) Å µ = 0.07 mm1
c = 21.889 (4) Å T = 296 K
V = 1887.9 (6) Å3 Prism, colourless
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEXII CCD diffractometer 2404 independent reflections
Radiation source: fine-focus sealed tube 1427 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −7→7
Tmin = 0.979, Tmax = 0.986 k = −21→21
20262 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.071P)2 + 0.2P] where P = (Fo2 + 2Fc2)/3
2404 reflections (Δ/σ)max < 0.001
110 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.11 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1929 (2) 0.12834 (6) 0.05285 (5) 0.0764 (3)
C1 0.1981 (3) 0.19881 (9) 0.08887 (6) 0.0641 (4)
C2 0.3717 (2) 0.19780 (9) 0.13598 (6) 0.0614 (4)
C3 0.3831 (3) 0.26839 (11) 0.17357 (8) 0.0805 (5)
H3A 0.4969 0.2696 0.2052 0.097*
C4 0.2297 (4) 0.33659 (12) 0.16510 (10) 0.0964 (6)
H4A 0.2408 0.3832 0.1909 0.116*
C5 0.0609 (4) 0.33587 (12) 0.11879 (11) 0.0958 (6)
H5A −0.0436 0.3817 0.1134 0.115*
C6 0.0455 (3) 0.26750 (11) 0.08014 (8) 0.0826 (5)
H6A −0.0673 0.2675 0.0483 0.099*
C7 0.5292 (3) 0.12253 (10) 0.14476 (7) 0.0655 (4)
H7A 0.4863 0.0747 0.1225 0.079*
C8 0.7203 (3) 0.11548 (10) 0.17993 (7) 0.0729 (4)
H8A 0.7671 0.1632 0.2018 0.088*
C9 0.8691 (3) 0.03876 (12) 0.18816 (7) 0.0789 (5)
H9A 0.8709 0.0234 0.2306 0.118*
H9B 1.0338 0.0494 0.1746 0.118*
H9C 0.7998 −0.0065 0.1646 0.118*
C10 0.0059 (3) 0.12144 (11) 0.00726 (8) 0.0791 (5)
H10A 0.0261 0.1653 −0.0233 0.095*
H10B −0.1549 0.1277 0.0257 0.095*
C11 0.0297 (4) 0.03563 (11) −0.02174 (7) 0.0827 (5)
H11A 0.1962 0.0286 −0.0366 0.099*
H11B −0.0797 0.0325 −0.0566 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0798 (7) 0.0745 (7) 0.0750 (7) 0.0052 (5) −0.0182 (5) −0.0066 (5)
C1 0.0641 (8) 0.0616 (8) 0.0665 (8) −0.0057 (6) 0.0061 (7) 0.0056 (6)
C2 0.0609 (8) 0.0622 (8) 0.0611 (8) −0.0133 (6) 0.0091 (6) 0.0018 (6)
C3 0.0864 (11) 0.0742 (10) 0.0807 (10) −0.0152 (8) 0.0078 (9) −0.0079 (8)
C4 0.1190 (15) 0.0636 (10) 0.1066 (14) −0.0128 (10) 0.0252 (13) −0.0162 (10)
C5 0.1026 (13) 0.0663 (11) 0.1185 (16) 0.0098 (9) 0.0153 (13) 0.0074 (10)
C6 0.0802 (10) 0.0741 (11) 0.0936 (12) 0.0050 (8) 0.0000 (9) 0.0135 (9)
C7 0.0640 (8) 0.0719 (9) 0.0605 (8) −0.0116 (7) −0.0001 (6) −0.0039 (7)
C8 0.0725 (9) 0.0806 (10) 0.0657 (9) −0.0124 (8) −0.0047 (7) −0.0068 (7)
C9 0.0681 (9) 0.0978 (12) 0.0708 (9) 0.0015 (8) −0.0044 (7) 0.0010 (8)
C10 0.0803 (10) 0.0902 (11) 0.0666 (9) −0.0064 (8) −0.0164 (8) 0.0109 (8)
C11 0.0945 (12) 0.0979 (12) 0.0558 (8) −0.0157 (10) −0.0108 (8) 0.0026 (7)

Geometric parameters (Å, °)

O1—C1 1.3659 (17) C7—C8 1.300 (2)
O1—C10 1.4305 (19) C7—H7A 0.9300
C1—C6 1.382 (2) C8—C9 1.471 (2)
C1—C2 1.399 (2) C8—H8A 0.9300
C2—C3 1.389 (2) C9—H9A 0.9600
C2—C7 1.481 (2) C9—H9B 0.9600
C3—C4 1.378 (3) C9—H9C 0.9600
C3—H3A 0.9300 C10—C11 1.505 (2)
C4—C5 1.369 (3) C10—H10A 0.9700
C4—H4A 0.9300 C10—H10B 0.9700
C5—C6 1.376 (3) C11—C11i 1.511 (3)
C5—H5A 0.9300 C11—H11A 0.9700
C6—H6A 0.9300 C11—H11B 0.9700
C1—O1—C10 118.67 (12) C7—C8—C9 125.81 (15)
O1—C1—C6 123.36 (14) C7—C8—H8A 117.1
O1—C1—C2 115.47 (12) C9—C8—H8A 117.1
C6—C1—C2 121.17 (15) C8—C9—H9A 109.5
C3—C2—C1 117.23 (14) C8—C9—H9B 109.5
C3—C2—C7 122.96 (14) H9A—C9—H9B 109.5
C1—C2—C7 119.78 (12) C8—C9—H9C 109.5
C4—C3—C2 121.55 (18) H9A—C9—H9C 109.5
C4—C3—H3A 119.2 H9B—C9—H9C 109.5
C2—C3—H3A 119.2 O1—C10—C11 107.57 (13)
C5—C4—C3 120.05 (17) O1—C10—H10A 110.2
C5—C4—H4A 120.0 C11—C10—H10A 110.2
C3—C4—H4A 120.0 O1—C10—H10B 110.2
C4—C5—C6 120.20 (18) C11—C10—H10B 110.2
C4—C5—H5A 119.9 H10A—C10—H10B 108.5
C6—C5—H5A 119.9 C10—C11—C11i 112.91 (17)
C5—C6—C1 119.78 (18) C10—C11—H11A 109.0
C5—C6—H6A 120.1 C11i—C11—H11A 109.0
C1—C6—H6A 120.1 C10—C11—H11B 109.0
C8—C7—C2 127.62 (14) C11i—C11—H11B 109.0
C8—C7—H7A 116.2 H11A—C11—H11B 107.8
C2—C7—H7A 116.2
C10—O1—C1—C6 −5.9 (2) C3—C4—C5—C6 −0.7 (3)
C10—O1—C1—C2 174.45 (13) C4—C5—C6—C1 1.1 (3)
O1—C1—C2—C3 179.89 (13) O1—C1—C6—C5 179.48 (15)
C6—C1—C2—C3 0.3 (2) C2—C1—C6—C5 −0.9 (2)
O1—C1—C2—C7 −1.52 (18) C3—C2—C7—C8 −12.1 (2)
C6—C1—C2—C7 178.86 (14) C1—C2—C7—C8 169.40 (15)
C1—C2—C3—C4 0.2 (2) C2—C7—C8—C9 178.78 (15)
C7—C2—C3—C4 −178.36 (15) C1—O1—C10—C11 −175.35 (13)
C2—C3—C4—C5 0.0 (3) O1—C10—C11—C11i 66.7 (2)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2326).

References

  1. Askadsky, A. A. (1998). Successes Chem 67, 755–787.
  2. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Crivello, J. V., Carter, A. M. & Bratslavsky, S. A. (1994). J. Polymer Sci. Part A Polymer Chem. 32, 2895–2909.
  5. Roshupkin, V. P. & Kurmaz, S. V. (2004). Successes Chem 73, 247–274.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018538/kp2326sup1.cif

e-67-o1478-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018538/kp2326Isup2.hkl

e-67-o1478-Isup2.hkl (118.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018538/kp2326Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES