Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1345. doi: 10.1107/S1600536811016710

Rauniticine-allo-oxindole B methanol monosolvate

Fatimah Salim a, Rohaya Ahmad a, Nor Hadiani Ismail a, Hazrina Hazni b, Seik Weng Ng b,*
PMCID: PMC3120594  PMID: 21754740

Abstract

The title penta­cyclic oxindole alkadoid, isolated from Uncaria longiflora, crystallizes as a methanol solvate, C20H22N2O4·CH4O. The five-membered ring comprising the indole fused ring is nearly planar [maximum atomic deviation = 0.031 (2) Å], whereas the five-membered ring having alphatic C atoms adopts an envelope shape (with the tertiary N atom representing the flap). The six-membered ring that shares an N atom with the envelope-shaped ring adopts a chair shape; the six-membered ring having an O atom is sofa-shaped. The carb­oxy­lic acid group acts as a hydrogen-bond donor to a methanol mol­ecule; this, in turn, acts as a hydrogen-bond donor to the double-bond carboxyl O atom of an adjacent mol­ecule, generating a chain. Adjacent chains are linked by N—H⋯O hydrogen bonds, forming a layer motif.

Related literature

For the spectroscopic identification of rauniticine-allo-oxindole B, see: Seki et al. (1993).graphic file with name e-67-o1345-scheme1.jpg

Experimental

Crystal data

  • C20H22N2O4·CH4O

  • M r = 386.44

  • Monoclinic, Inline graphic

  • a = 9.2330 (3) Å

  • b = 7.2110 (2) Å

  • c = 14.7678 (4) Å

  • β = 99.313 (3)°

  • V = 970.27 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.981, T max = 0.995

  • 9109 measured reflections

  • 2381 independent reflections

  • 2181 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.093

  • S = 1.05

  • 2381 reflections

  • 266 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016710/xu5205sup1.cif

e-67-o1345-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016710/xu5205Isup2.hkl

e-67-o1345-Isup2.hkl (117KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.84 (3) 1.83 (3) 2.662 (3) 173 (4)
O5—H5⋯O2i 0.84 (3) 1.91 (3) 2.728 (2) 165 (4)
N2—H2⋯O4ii 0.88 (3) 1.97 (3) 2.805 (3) 158 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The genus Uncaria is a source of diverse bioactive compounds, and parts of the plant are use for medicinal purposes. The structure of rauniticine-allo-oxindole B was previously elucidated by NMR spectroscopy in on study on heteroyohimbine-type oxindole alkaloids (Seki et al., 1993). The assignment is confirmed in the present study on the methanol-solvated compound (Scheme I) isolated from Uncaria longiflora. The pentacyclic oxindole alkadoid, C20H22N2O4, features a five-membered ring that adopts the shape of an envelope (with the tertiary N atom representing the flap). The six-membered ring that shares an N atom with the envelope-shaped ring adopts the shape of a chair; the six-membered ring having an O atom is sofa-shaped (Fig. 1). The carboxylic acid portion of the molecule is hydrogen-bond donor to a methanol molecule; this, in turn, is hydrogen-bond donor to the double-bond carboxyl O atom of an adjacent molecule to generate a chain. Adjacent chains are linked by an N–H···O hydrogen bond to form a layer motif (Table 1, Fig. 2).

Experimental

Uncaria longiflora plant material was collected from Hutan Simpan Bangi, Selangor, Malaysia, and specimens were deposited at Taman Botani Putrajaya, Malaysia. Dried and ground stems were extracted with methanol for 72 h to give 25 g of crude extract. This was acidified with 5% hydrochloric acid, and non-alkaloidal material was removed followed with basification with 37% ammonium hydroxide to release the alkaloid. The alkaloid was extracted into chloroform to give 2.25 g of a crude alkaloid fraction. The fraction was dissolved in methanol and subjected to radial chromatography (4 mm thickness silica-gel plate) with dichloromethane:ethyl acetate followed by ethyl acetate:methanol with a gradual increase of solvent polarity. Rauniticine-allo-oxindole B was separated and purified by repeated preparative thin layer chromatography using chloroform:methanol (120:5). The polar fraction afforded colorless crystals when the solvent was allowed to evaporate (53 mg).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 1.00 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The oxygen-bound H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å; their temperature factors were refined.

The absolute configuration was assumed to be that from a spectropic study (Seki et al., 1993); in the absence of heavy atoms, 1853 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C20H22N2O4.CH3OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Hydrogen-bonded layer structure.

Crystal data

C20H22N2O4·CH4O F(000) = 412
Mr = 386.44 Dx = 1.323 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4552 reflections
a = 9.2330 (3) Å θ = 2.4–29.2°
b = 7.2110 (2) Å µ = 0.10 mm1
c = 14.7678 (4) Å T = 100 K
β = 99.313 (3)° Prism, colorless
V = 970.27 (5) Å3 0.20 × 0.10 × 0.05 mm
Z = 2

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2381 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2181 reflections with I > 2σ(I)
Mirror Rint = 0.039
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.4°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −9→9
Tmin = 0.981, Tmax = 0.995 l = −19→19
9109 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2288P] where P = (Fo2 + 2Fc2)/3
2381 reflections (Δ/σ)max = 0.001
266 parameters Δρmax = 0.21 e Å3
4 restraints Δρmin = −0.19 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.30437 (18) 1.0011 (3) 0.98971 (12) 0.0253 (4)
O2 1.06782 (16) 0.9207 (3) 0.96906 (11) 0.0226 (4)
O3 1.42440 (17) 0.5574 (3) 0.85208 (12) 0.0257 (4)
O4 1.04085 (17) 0.6078 (3) 0.54863 (11) 0.0214 (4)
O5 1.20768 (17) 1.2803 (3) 1.08162 (11) 0.0233 (4)
N1 0.9975 (2) 0.3485 (3) 0.71523 (12) 0.0181 (4)
N2 0.8390 (2) 0.7963 (3) 0.52546 (13) 0.0204 (4)
C1 1.1933 (2) 0.8909 (3) 0.95551 (14) 0.0180 (5)
C2 1.2329 (2) 0.7332 (4) 0.90209 (15) 0.0180 (5)
C3 1.3739 (2) 0.6984 (4) 0.89692 (15) 0.0224 (5)
H3 1.4447 0.7818 0.9280 0.027*
C4 1.3173 (3) 0.4343 (4) 0.79913 (16) 0.0218 (5)
H4 1.2837 0.4902 0.7373 0.026*
C5 1.3986 (3) 0.2554 (4) 0.7878 (2) 0.0339 (6)
H5A 1.4810 0.2807 0.7553 0.051*
H5B 1.3316 0.1667 0.7525 0.051*
H5C 1.4359 0.2032 0.8484 0.051*
C6 1.1853 (2) 0.4113 (4) 0.84882 (15) 0.0188 (5)
H6 1.2229 0.3627 0.9117 0.023*
C9 1.0709 (2) 0.2749 (4) 0.80272 (15) 0.0200 (5)
H9A 1.1188 0.1557 0.7924 0.024*
H9B 0.9975 0.2512 0.8433 0.024*
C10 0.9215 (2) 0.5222 (3) 0.72771 (15) 0.0163 (5)
H10 0.8512 0.4990 0.7713 0.020*
C11 1.0279 (2) 0.6712 (3) 0.76820 (14) 0.0168 (5)
H11A 0.9735 0.7855 0.7786 0.020*
H11B 1.0963 0.7006 0.7251 0.020*
C12 1.1150 (2) 0.6013 (3) 0.86019 (15) 0.0164 (5)
H12 1.0443 0.5862 0.9043 0.020*
C13 0.8837 (3) 0.2265 (4) 0.66791 (16) 0.0229 (5)
H13A 0.8237 0.1735 0.7114 0.028*
H13B 0.9272 0.1239 0.6368 0.028*
C14 0.7913 (3) 0.3531 (4) 0.59816 (15) 0.0201 (5)
H14A 0.6853 0.3293 0.5968 0.024*
H14B 0.8151 0.3324 0.5359 0.024*
C15 0.8317 (2) 0.5561 (3) 0.63129 (15) 0.0167 (5)
C16 0.9193 (2) 0.6518 (3) 0.56509 (15) 0.0179 (5)
C17 0.7091 (2) 0.8212 (4) 0.56293 (15) 0.0189 (5)
C18 0.6022 (2) 0.9545 (4) 0.54169 (16) 0.0223 (5)
H18 0.6081 1.0452 0.4958 0.027*
C19 0.4849 (3) 0.9504 (4) 0.59050 (16) 0.0242 (5)
H19 0.4095 1.0408 0.5780 0.029*
C20 0.4765 (2) 0.8163 (4) 0.65720 (16) 0.0239 (5)
H20 0.3963 0.8172 0.6902 0.029*
C21 0.5849 (2) 0.6802 (4) 0.67598 (15) 0.0205 (5)
H21 0.5786 0.5875 0.7209 0.025*
C22 0.7016 (2) 0.6830 (3) 0.62794 (14) 0.0165 (5)
C23 1.2794 (3) 1.4465 (4) 1.11555 (17) 0.0266 (6)
H23A 1.2064 1.5366 1.1290 0.040*
H23B 1.3332 1.4979 1.0693 0.040*
H23C 1.3483 1.4195 1.1718 0.040*
H1 1.273 (3) 1.083 (4) 1.0219 (19) 0.041 (9)*
H5 1.1180 (14) 1.304 (5) 1.065 (2) 0.043 (9)*
H2 0.870 (3) 0.878 (3) 0.4885 (16) 0.034 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0214 (8) 0.0253 (10) 0.0282 (9) −0.0040 (8) 0.0009 (7) −0.0078 (8)
O2 0.0186 (8) 0.0237 (10) 0.0254 (8) 0.0002 (7) 0.0033 (6) −0.0060 (8)
O3 0.0181 (8) 0.0299 (11) 0.0298 (9) 0.0030 (8) 0.0052 (7) −0.0029 (8)
O4 0.0241 (8) 0.0194 (9) 0.0225 (8) 0.0002 (7) 0.0096 (6) −0.0014 (7)
O5 0.0190 (8) 0.0246 (10) 0.0255 (9) −0.0013 (8) 0.0017 (6) −0.0026 (8)
N1 0.0226 (9) 0.0140 (10) 0.0174 (9) 0.0007 (8) 0.0022 (7) −0.0008 (8)
N2 0.0237 (10) 0.0199 (11) 0.0180 (9) −0.0018 (9) 0.0045 (8) 0.0034 (8)
C1 0.0185 (10) 0.0188 (13) 0.0155 (10) −0.0008 (10) −0.0004 (8) 0.0021 (9)
C2 0.0176 (10) 0.0196 (12) 0.0169 (10) −0.0003 (9) 0.0033 (8) 0.0034 (9)
C3 0.0199 (10) 0.0266 (14) 0.0205 (11) −0.0017 (11) 0.0026 (9) 0.0017 (11)
C4 0.0219 (11) 0.0238 (13) 0.0206 (10) 0.0037 (10) 0.0063 (9) −0.0016 (11)
C5 0.0315 (13) 0.0286 (15) 0.0446 (16) 0.0093 (12) 0.0153 (12) 0.0015 (13)
C6 0.0209 (11) 0.0187 (12) 0.0169 (10) 0.0030 (10) 0.0027 (8) 0.0011 (10)
C9 0.0232 (11) 0.0160 (12) 0.0212 (11) 0.0008 (10) 0.0046 (9) 0.0035 (10)
C10 0.0182 (10) 0.0154 (11) 0.0159 (10) 0.0010 (9) 0.0051 (8) 0.0014 (9)
C11 0.0176 (10) 0.0153 (11) 0.0172 (10) 0.0013 (9) 0.0019 (8) 0.0001 (9)
C12 0.0173 (10) 0.0165 (11) 0.0156 (10) 0.0015 (9) 0.0035 (8) 0.0001 (9)
C13 0.0284 (12) 0.0188 (13) 0.0216 (11) −0.0028 (10) 0.0040 (9) −0.0010 (10)
C14 0.0241 (11) 0.0173 (12) 0.0191 (11) −0.0031 (10) 0.0040 (9) −0.0011 (10)
C15 0.0187 (10) 0.0157 (12) 0.0161 (10) 0.0002 (9) 0.0042 (8) −0.0015 (9)
C16 0.0214 (10) 0.0173 (12) 0.0146 (10) −0.0041 (9) 0.0015 (8) −0.0036 (9)
C17 0.0198 (10) 0.0190 (13) 0.0168 (10) −0.0048 (10) −0.0001 (8) −0.0024 (9)
C18 0.0258 (11) 0.0188 (12) 0.0198 (11) −0.0026 (10) −0.0039 (9) 0.0001 (10)
C19 0.0239 (11) 0.0209 (13) 0.0248 (12) 0.0033 (11) −0.0052 (9) −0.0036 (11)
C20 0.0209 (11) 0.0275 (15) 0.0234 (12) 0.0021 (11) 0.0033 (9) −0.0040 (11)
C21 0.0226 (11) 0.0197 (12) 0.0186 (10) −0.0016 (10) 0.0019 (9) −0.0005 (10)
C22 0.0191 (10) 0.0140 (11) 0.0150 (10) −0.0028 (9) −0.0010 (8) −0.0032 (9)
C23 0.0237 (11) 0.0261 (14) 0.0296 (13) −0.0006 (11) 0.0030 (10) −0.0057 (12)

Geometric parameters (Å, °)

O1—C1 1.331 (3) C10—C11 1.512 (3)
O1—H1 0.84 (3) C10—C15 1.547 (3)
O2—C1 1.227 (3) C10—H10 1.0000
O3—C3 1.338 (3) C11—C12 1.547 (3)
O3—C4 1.458 (3) C11—H11A 0.9900
O4—C16 1.228 (3) C11—H11B 0.9900
O5—C23 1.421 (3) C12—H12 1.0000
O5—H5 0.84 (3) C13—C14 1.529 (3)
N1—C9 1.458 (3) C13—H13A 0.9900
N1—C13 1.459 (3) C13—H13B 0.9900
N1—C10 1.462 (3) C14—C15 1.569 (3)
N2—C16 1.356 (3) C14—H14A 0.9900
N2—C17 1.411 (3) C14—H14B 0.9900
N2—H2 0.88 (3) C15—C22 1.505 (3)
C1—C2 1.464 (3) C15—C16 1.530 (3)
C2—C3 1.340 (3) C17—C18 1.377 (3)
C2—C12 1.502 (3) C17—C22 1.393 (3)
C3—H3 0.9500 C18—C19 1.395 (3)
C4—C5 1.515 (4) C18—H18 0.9500
C4—C6 1.530 (3) C19—C20 1.392 (4)
C4—H4 1.0000 C19—H19 0.9500
C5—H5A 0.9800 C20—C21 1.397 (3)
C5—H5B 0.9800 C20—H20 0.9500
C5—H5C 0.9800 C21—C22 1.383 (3)
C6—C9 1.522 (3) C21—H21 0.9500
C6—C12 1.537 (3) C23—H23A 0.9800
C6—H6 1.0000 C23—H23B 0.9800
C9—H9A 0.9900 C23—H23C 0.9800
C9—H9B 0.9900
C1—O1—H1 109 (2) H11A—C11—H11B 108.3
C3—O3—C4 117.88 (17) C2—C12—C6 108.58 (17)
C23—O5—H5 108 (3) C2—C12—C11 113.2 (2)
C9—N1—C13 113.6 (2) C6—C12—C11 111.30 (19)
C9—N1—C10 111.33 (18) C2—C12—H12 107.8
C13—N1—C10 104.68 (17) C6—C12—H12 107.8
C16—N2—C17 111.6 (2) C11—C12—H12 107.8
C16—N2—H2 125 (2) N1—C13—C14 104.1 (2)
C17—N2—H2 122 (2) N1—C13—H13A 110.9
O2—C1—O1 121.6 (2) C14—C13—H13A 110.9
O2—C1—C2 123.3 (2) N1—C13—H13B 110.9
O1—C1—C2 115.10 (19) C14—C13—H13B 110.9
C3—C2—C1 120.4 (2) H13A—C13—H13B 109.0
C3—C2—C12 120.3 (2) C13—C14—C15 105.55 (18)
C1—C2—C12 119.10 (19) C13—C14—H14A 110.6
O3—C3—C2 126.2 (2) C15—C14—H14A 110.6
O3—C3—H3 116.9 C13—C14—H14B 110.6
C2—C3—H3 116.9 C15—C14—H14B 110.6
O3—C4—C5 105.80 (19) H14A—C14—H14B 108.8
O3—C4—C6 109.42 (18) C22—C15—C16 101.90 (19)
C5—C4—C6 114.1 (2) C22—C15—C10 115.61 (18)
O3—C4—H4 109.1 C16—C15—C10 113.55 (18)
C5—C4—H4 109.1 C22—C15—C14 114.13 (18)
C6—C4—H4 109.1 C16—C15—C14 110.19 (18)
C4—C5—H5A 109.5 C10—C15—C14 101.82 (18)
C4—C5—H5B 109.5 O4—C16—N2 124.5 (2)
H5A—C5—H5B 109.5 O4—C16—C15 127.2 (2)
C4—C5—H5C 109.5 N2—C16—C15 108.30 (19)
H5A—C5—H5C 109.5 C18—C17—C22 122.9 (2)
H5B—C5—H5C 109.5 C18—C17—N2 128.5 (2)
C9—C6—C4 113.91 (19) C22—C17—N2 108.6 (2)
C9—C6—C12 110.48 (18) C17—C18—C19 117.1 (2)
C4—C6—C12 109.8 (2) C17—C18—H18 121.5
C9—C6—H6 107.5 C19—C18—H18 121.5
C4—C6—H6 107.5 C20—C19—C18 121.2 (2)
C12—C6—H6 107.5 C20—C19—H19 119.4
N1—C9—C6 110.5 (2) C18—C19—H19 119.4
N1—C9—H9A 109.5 C19—C20—C21 120.5 (2)
C6—C9—H9A 109.5 C19—C20—H20 119.7
N1—C9—H9B 109.5 C21—C20—H20 119.7
C6—C9—H9B 109.5 C22—C21—C20 118.7 (2)
H9A—C9—H9B 108.1 C22—C21—H21 120.6
N1—C10—C11 111.33 (17) C20—C21—H21 120.6
N1—C10—C15 102.46 (18) C21—C22—C17 119.6 (2)
C11—C10—C15 117.98 (19) C21—C22—C15 131.2 (2)
N1—C10—H10 108.2 C17—C22—C15 109.2 (2)
C11—C10—H10 108.2 O5—C23—H23A 109.5
C15—C10—H10 108.2 O5—C23—H23B 109.5
C10—C11—C12 109.15 (19) H23A—C23—H23B 109.5
C10—C11—H11A 109.8 O5—C23—H23C 109.5
C12—C11—H11A 109.8 H23A—C23—H23C 109.5
C10—C11—H11B 109.8 H23B—C23—H23C 109.5
C12—C11—H11B 109.8
O2—C1—C2—C3 −173.7 (2) N1—C10—C15—C22 158.78 (18)
O1—C1—C2—C3 5.8 (3) C11—C10—C15—C22 −78.6 (3)
O2—C1—C2—C12 0.8 (3) N1—C10—C15—C16 −83.9 (2)
O1—C1—C2—C12 −179.7 (2) C11—C10—C15—C16 38.7 (3)
C4—O3—C3—C2 3.7 (4) N1—C10—C15—C14 34.5 (2)
C1—C2—C3—O3 178.6 (2) C11—C10—C15—C14 157.11 (19)
C12—C2—C3—O3 4.1 (4) C13—C14—C15—C22 −135.9 (2)
C3—O3—C4—C5 −158.8 (2) C13—C14—C15—C16 110.2 (2)
C3—O3—C4—C6 −35.5 (3) C13—C14—C15—C10 −10.6 (2)
O3—C4—C6—C9 −176.11 (19) C17—N2—C16—O4 −175.5 (2)
C5—C4—C6—C9 −57.8 (3) C17—N2—C16—C15 5.0 (2)
O3—C4—C6—C12 59.4 (2) C22—C15—C16—O4 174.9 (2)
C5—C4—C6—C12 177.6 (2) C10—C15—C16—O4 49.9 (3)
C13—N1—C9—C6 −178.73 (19) C14—C15—C16—O4 −63.6 (3)
C10—N1—C9—C6 −60.9 (2) C22—C15—C16—N2 −5.7 (2)
C4—C6—C9—N1 −68.4 (3) C10—C15—C16—N2 −130.7 (2)
C12—C6—C9—N1 55.7 (2) C14—C15—C16—N2 115.8 (2)
C9—N1—C10—C11 62.3 (2) C16—N2—C17—C18 178.7 (2)
C13—N1—C10—C11 −174.57 (18) C16—N2—C17—C22 −2.0 (3)
C9—N1—C10—C15 −170.65 (18) C22—C17—C18—C19 1.9 (3)
C13—N1—C10—C15 −47.5 (2) N2—C17—C18—C19 −178.8 (2)
N1—C10—C11—C12 −57.0 (2) C17—C18—C19—C20 −0.4 (3)
C15—C10—C11—C12 −174.97 (18) C18—C19—C20—C21 −0.9 (4)
C3—C2—C12—C6 20.8 (3) C19—C20—C21—C22 0.9 (3)
C1—C2—C12—C6 −153.8 (2) C20—C21—C22—C17 0.5 (3)
C3—C2—C12—C11 −103.4 (3) C20—C21—C22—C15 −178.8 (2)
C1—C2—C12—C11 82.0 (2) C18—C17—C22—C21 −2.0 (3)
C9—C6—C12—C2 −177.57 (17) N2—C17—C22—C21 178.6 (2)
C4—C6—C12—C2 −51.1 (2) C18—C17—C22—C15 177.5 (2)
C9—C6—C12—C11 −52.3 (2) N2—C17—C22—C15 −1.9 (2)
C4—C6—C12—C11 74.2 (2) C16—C15—C22—C21 −176.1 (2)
C10—C11—C12—C2 175.10 (18) C10—C15—C22—C21 −52.5 (3)
C10—C11—C12—C6 52.4 (2) C14—C15—C22—C21 65.2 (3)
C9—N1—C13—C14 162.01 (19) C16—C15—C22—C17 4.5 (2)
C10—N1—C13—C14 40.4 (2) C10—C15—C22—C17 128.1 (2)
N1—C13—C14—C15 −17.1 (2) C14—C15—C22—C17 −114.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O5 0.84 (3) 1.83 (3) 2.662 (3) 173 (4)
O5—H5···O2i 0.84 (3) 1.91 (3) 2.728 (2) 165 (4)
N2—H2···O4ii 0.88 (3) 1.97 (3) 2.805 (3) 158 (3)

Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5205).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Seki, H., Takayama, H., Aimi, N., Sakai, S. & Ponglux, D. (1993). Chem. Pharm. Bull. 41, 2077–2086. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811016710/xu5205sup1.cif

e-67-o1345-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016710/xu5205Isup2.hkl

e-67-o1345-Isup2.hkl (117KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES