Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 11;67(Pt 6):o1382. doi: 10.1107/S1600536811016862

tert-Butyl N-{2-[bis­(prop-2-yn-1-yl)amino]­phen­yl}carbamate

Manavendra K Singh a, Alka Agarwal a,*, Charu Mahawar a, Satish K Awasthi b,*
PMCID: PMC3120597  PMID: 21754772

Abstract

In the crystal of the title compound, C17H20N2O2, the molecules are linked by C—H⋯O interactions. Intra­molecular C—H⋯O and N—H⋯N hydrogen bonds also occur.

Related literature

For applications of alkyne scaffolds in biology, medicinal and materials chemistry, see: Diederich et al. (2005); Stang & Diederich (1995); Lam et al. (1988); Patai (1994). For background to click chemistry, which involves 1,3-dipolar cyclo­addition of an alkyne with an azide and is an efficient and highly versatile tool that has allowed the preparation of a variety of macromolecule conjugates such as sugars, peptides or proteins and DNA, see: Rostovtsev et al. (2002). For the synthesis, see: Lilienkampf et al. (2009). For inter­molecular inter­actions, see: Steiner & Desiraju (1998). For intra­molecular C—H⋯O hydrogen bonds, see: Smith et al. (1993).graphic file with name e-67-o1382-scheme1.jpg

Experimental

Crystal data

  • C17H20N2O2

  • M r = 284.35

  • Monoclinic, Inline graphic

  • a = 19.1936 (12) Å

  • b = 8.7181 (4) Å

  • c = 19.7619 (9) Å

  • β = 99.513 (5)°

  • V = 3261.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.39 × 0.38 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.953, T max = 1.000

  • 6969 measured reflections

  • 4389 independent reflections

  • 2427 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.156

  • S = 0.96

  • 4389 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016862/zj2008sup1.cif

e-67-o1382-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016862/zj2008Isup2.hkl

e-67-o1382-Isup2.hkl (177.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016862/zj2008Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.97 2.55 3.512 (2) 171
C9—H9⋯O1ii 0.93 2.28 3.194 (3) 166
C2—H2⋯O1 0.93 2.32 2.911 (3) 121
N1—HN1⋯N2 0.810 (19) 2.28 (2) 2.703 (2) 114 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AA, MKS and CM are thankful to the University Grant Commission (scheme No. 34–311/2008), New Delhi, and Banaras Hindu University, Varanasi, India, for financial assistance. SKA is thankful to the University of Delhi, India, for financial assistance.

supplementary crystallographic information

Comment

The carbon-carbon triple bond is an important and versatile functional group in organic chemistry. Alkynes are found in numerous natural products as well as in synthetic organic molecules. These alkyne scaffolds have various applications in biology, medicinal and material chemistry (Diederich et al., 2005; Stang & Diederich 1995; Lam et al., 1988; Patai 1994). Click chemistry developed by Sharpless (Rostovtsev et al., 2002) involves 1,3-dipolar cycloaddition of alkyne with azide as an efficient and highly versatile tool that has allowed to prepare a variety of macromolecule conjugates such as sugars, peptides or proteins and DNA. As part of our ongoing work on antimicrobial studies on small molecules, we characterized and report here the crystal structure of [2-(di-prop-2-ynyl-amino)phenyl]carbamic acid tert-butyl ester (Figure1).

In the crystal structure, the compound is stabilized by intermolecular interaction between C10—H10B···O1 and C9—H9···O1 (Steiner & Desiraju, 1998) and intramolecular hydrogen bond between C2—H2···O1 (Smith et al., 1993) and N1—HN1···N2 as seen in the crystal packing diagram along b axis (Table 1, Figure 2). Considering C1—C6 C13—C15 N1 N2 O1 O2 atom as plane A, C7 C8 C9 atom as plane B, C10 C11 C12 atom as plane C, the dihedral angels between planes A/B, A/C and B/C are 74.74°, 57.52°, 48.94° respectively, suggests that the molecule is not co-planar.

Experimental

The synthesis of the title compound was carried out according to the published procedure (Lilienkampf, et al., 2009). Briefly, to a solution of (2-aminophenyl)carbamic acid tert-butyl ester (1.5 g, 7.2 mmol) in dry acetone was added anhydrous K2CO3 (7.95 g, 54.6 m mol) and reaction mixture was refluxed for 15–30 minutes. Subsequently, KI (0.60 g m, 3.6 mmol) and propargyl bromide (0.75 ml, 7.8 mmol) were added and further refluxed the reaction mixture for 18 hrs. The reaction mixture was cooled, filtered, and the filtrate was evaporated in vacuo to give the product. The crude product was purified by column chromatography using hexane and dichloromethane (65:35) as eluent. The purified product was recrystallized from hexane-dichloromethane (1:1). The colourless crystals were obtained by slow evaporation of solvent at room temperature in several days. Yield: 20%.

1H NMR (CDCl3): 8.11 (bs, 1H, NH), 7.56–7.55 (m, 1H, Ar—H), 7.35- 7.32 (m, 1H, Ar—H), 7.19–7.14 (m, 1H, Ar—H), 6.99–6.94 (m, 1H, Ar—H), 3.83 (s, 4H, CH2), 2.28 (s, 2H, CH), 1.51 (s, 9H, 3xCH3).

Refinement

All H atoms were located from difference Fourier map (range of C—H = 0.93 - 0.97 Å, and N–H = 0.81 Å) and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; blue: N; white: H

Fig. 2.

Fig. 2.

Intermolecular interaction between C—H···O (blue line) and Intramolecular hydrogen bond (red line) showed in packing diagram of molecule along b-plane

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C17H20N2O2 F(000) = 1216.0
Mr = 284.35 Dx = 1.158 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4389 reflections
a = 19.1936 (12) Å θ = 3.2–29.0°
b = 8.7181 (4) Å µ = 0.08 mm1
c = 19.7619 (9) Å T = 293 K
β = 99.513 (5)° Block, colourless
V = 3261.3 (3) Å3 0.40 × 0.39 × 0.38 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 4389 independent reflections
Radiation source: fine-focus sealed tube 2427 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 29.1°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −24→7
Tmin = 0.953, Tmax = 1.000 k = −10→10
6969 measured reflections l = −23→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0754P)2 + 1.325P] where P = (Fo2 + 2Fc2)/3
4389 reflections (Δ/σ)max = 0.05
194 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
HN1 0.1292 (11) 0.706 (2) 0.4601 (9) 0.038 (5)*
N1 0.13858 (9) 0.78587 (19) 0.47962 (8) 0.0397 (4)
O2 0.05794 (7) 0.71231 (15) 0.53892 (6) 0.0505 (4)
N2 0.17096 (8) 0.68525 (17) 0.35922 (7) 0.0399 (4)
C1 0.18983 (9) 0.8707 (2) 0.45262 (8) 0.0362 (4)
O1 0.11848 (8) 0.93110 (16) 0.57014 (6) 0.0548 (4)
C13 0.10630 (10) 0.8202 (2) 0.53354 (8) 0.0380 (4)
C6 0.20658 (10) 0.8197 (2) 0.38966 (8) 0.0383 (4)
C2 0.22421 (11) 0.9975 (2) 0.48421 (10) 0.0454 (5)
H2 0.2130 1.0324 0.5256 0.055*
C11 0.19018 (12) 0.4288 (3) 0.31791 (9) 0.0510 (5)
C5 0.25792 (11) 0.8980 (2) 0.36113 (10) 0.0507 (5)
H5 0.2691 0.8655 0.3194 0.061*
C10 0.21577 (11) 0.5866 (2) 0.32379 (9) 0.0476 (5)
H10A 0.2168 0.6274 0.2783 0.057*
H10B 0.2637 0.5879 0.3489 0.057*
C8 0.10589 (12) 0.7963 (3) 0.25187 (10) 0.0586 (6)
C3 0.27519 (12) 1.0729 (2) 0.45480 (11) 0.0544 (5)
H3 0.2980 1.1581 0.4765 0.065*
C7 0.10173 (11) 0.7167 (2) 0.31671 (9) 0.0491 (5)
H7A 0.0771 0.6202 0.3064 0.059*
H7B 0.0739 0.7786 0.3431 0.059*
C14 0.00843 (11) 0.7249 (2) 0.58831 (9) 0.0484 (5)
C4 0.29225 (12) 1.0225 (2) 0.39370 (12) 0.0576 (6)
H4 0.3270 1.0727 0.3744 0.069*
C12 0.17318 (14) 0.2999 (3) 0.31334 (12) 0.0681 (7)
H12 0.1597 0.1974 0.3097 0.082*
C15 −0.03735 (16) 0.5849 (3) 0.57144 (14) 0.0852 (9)
H15A −0.0629 0.5935 0.5255 0.128*
H15B −0.0701 0.5772 0.6031 0.128*
H15C −0.0081 0.4949 0.5750 0.128*
C9 0.11141 (16) 0.8551 (4) 0.20009 (13) 0.0838 (8)
H9 0.1158 0.9020 0.1587 0.101*
C16 0.04878 (15) 0.7145 (4) 0.66033 (11) 0.0833 (9)
H16A 0.0750 0.6203 0.6656 0.125*
H16B 0.0163 0.7169 0.6924 0.125*
H16C 0.0808 0.7996 0.6689 0.125*
C17 −0.03353 (15) 0.8709 (3) 0.57635 (15) 0.0854 (9)
H17A −0.0585 0.8727 0.5300 0.128*
H17B −0.0021 0.9572 0.5837 0.128*
H17C −0.0668 0.8759 0.6076 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0456 (10) 0.0393 (9) 0.0381 (8) −0.0030 (7) 0.0187 (7) −0.0042 (7)
O2 0.0517 (9) 0.0599 (8) 0.0465 (7) −0.0109 (7) 0.0271 (6) −0.0086 (6)
N2 0.0396 (9) 0.0496 (9) 0.0328 (7) 0.0035 (7) 0.0129 (6) 0.0014 (6)
C1 0.0340 (10) 0.0386 (9) 0.0379 (9) 0.0065 (8) 0.0118 (7) 0.0075 (7)
O1 0.0565 (9) 0.0634 (9) 0.0486 (7) −0.0082 (7) 0.0212 (6) −0.0186 (7)
C13 0.0358 (10) 0.0462 (10) 0.0332 (8) 0.0030 (8) 0.0094 (7) 0.0006 (7)
C6 0.0362 (10) 0.0424 (10) 0.0386 (9) 0.0062 (8) 0.0126 (7) 0.0083 (7)
C2 0.0431 (11) 0.0422 (10) 0.0530 (11) 0.0036 (9) 0.0133 (8) −0.0008 (8)
C11 0.0530 (13) 0.0616 (14) 0.0412 (10) 0.0101 (11) 0.0160 (9) −0.0043 (9)
C5 0.0506 (13) 0.0553 (12) 0.0518 (11) 0.0017 (10) 0.0250 (9) 0.0092 (9)
C10 0.0457 (12) 0.0610 (13) 0.0391 (9) 0.0088 (10) 0.0155 (8) −0.0007 (8)
C8 0.0522 (14) 0.0731 (15) 0.0499 (12) 0.0075 (12) 0.0066 (9) 0.0173 (10)
C3 0.0455 (13) 0.0434 (11) 0.0756 (14) −0.0007 (10) 0.0141 (10) 0.0011 (10)
C7 0.0418 (12) 0.0638 (13) 0.0432 (10) 0.0022 (10) 0.0113 (8) 0.0076 (9)
C14 0.0456 (12) 0.0621 (12) 0.0435 (10) 0.0018 (10) 0.0247 (8) 0.0024 (9)
C4 0.0466 (13) 0.0529 (12) 0.0794 (14) −0.0020 (10) 0.0287 (11) 0.0122 (11)
C12 0.0762 (18) 0.0616 (15) 0.0727 (15) 0.0037 (13) 0.0307 (13) −0.0087 (11)
C15 0.081 (2) 0.095 (2) 0.0936 (18) −0.0271 (16) 0.0533 (15) −0.0110 (15)
C9 0.081 (2) 0.108 (2) 0.0634 (15) 0.0147 (17) 0.0150 (13) 0.0378 (15)
C16 0.086 (2) 0.121 (2) 0.0472 (13) 0.0107 (18) 0.0253 (12) 0.0175 (13)
C17 0.0630 (17) 0.093 (2) 0.110 (2) 0.0268 (15) 0.0427 (15) 0.0300 (16)

Geometric parameters (Å, °)

N1—C13 1.352 (2) C8—C7 1.471 (3)
N1—C1 1.404 (2) C3—C4 1.374 (3)
N1—HN1 0.801 (19) C3—H3 0.9300
O2—C13 1.338 (2) C7—H7A 0.9700
O2—C14 1.475 (2) C7—H7B 0.9700
N2—C6 1.438 (2) C14—C17 1.504 (3)
N2—C7 1.476 (2) C14—C16 1.507 (3)
N2—C10 1.472 (2) C14—C15 1.509 (3)
C1—C2 1.382 (3) C4—H4 0.9300
C1—C6 1.407 (2) C12—H12 0.9300
O1—C13 1.207 (2) C15—H15A 0.9600
C6—C5 1.392 (3) C15—H15B 0.9600
C2—C3 1.384 (3) C15—H15C 0.9600
C2—H2 0.9300 C9—H9 0.9300
C11—C12 1.170 (3) C16—H16A 0.9600
C11—C10 1.459 (3) C16—H16B 0.9600
C5—C4 1.374 (3) C16—H16C 0.9600
C5—H5 0.9300 C17—H17A 0.9600
C10—H10A 0.9700 C17—H17B 0.9600
C10—H10B 0.9700 C17—H17C 0.9600
C8—C9 1.164 (3)
C13—N1—C1 128.60 (16) C8—C7—H7A 108.7
C13—N1—HN1 118.4 (14) N2—C7—H7A 108.7
C1—N1—HN1 113.0 (14) C8—C7—H7B 108.7
C13—O2—C14 122.13 (14) N2—C7—H7B 108.7
C6—N2—C7 114.07 (15) H7A—C7—H7B 107.6
C6—N2—C10 113.60 (15) O2—C14—C17 110.24 (16)
C7—N2—C10 112.31 (14) O2—C14—C16 109.50 (18)
C2—C1—C6 119.35 (16) C17—C14—C16 112.2 (2)
C2—C1—N1 124.15 (16) O2—C14—C15 102.07 (16)
C6—C1—N1 116.50 (16) C17—C14—C15 111.9 (2)
O1—C13—O2 125.71 (16) C16—C14—C15 110.5 (2)
O1—C13—N1 125.54 (17) C5—C4—C3 119.92 (19)
O2—C13—N1 108.74 (15) C5—C4—H4 120.0
C5—C6—C1 118.91 (18) C3—C4—H4 120.0
C5—C6—N2 123.34 (16) C11—C12—H12 180.0
C1—C6—N2 117.72 (15) C14—C15—H15A 109.5
C3—C2—C1 120.53 (18) C14—C15—H15B 109.5
C3—C2—H2 119.7 H15A—C15—H15B 109.5
C1—C2—H2 119.7 C14—C15—H15C 109.5
C12—C11—C10 176.5 (2) H15A—C15—H15C 109.5
C4—C5—C6 120.96 (19) H15B—C15—H15C 109.5
C4—C5—H5 119.5 C8—C9—H9 180.0
C6—C5—H5 119.5 C14—C16—H16A 109.5
C11—C10—N2 111.90 (16) C14—C16—H16B 109.5
C11—C10—H10A 109.2 H16A—C16—H16B 109.5
N2—C10—H10A 109.2 C14—C16—H16C 109.5
C11—C10—H10B 109.2 H16A—C16—H16C 109.5
N2—C10—H10B 109.2 H16B—C16—H16C 109.5
H10A—C10—H10B 107.9 C14—C17—H17A 109.5
C9—C8—C7 177.1 (3) C14—C17—H17B 109.5
C4—C3—C2 120.3 (2) H17A—C17—H17B 109.5
C4—C3—H3 119.8 C14—C17—H17C 109.5
C2—C3—H3 119.8 H17A—C17—H17C 109.5
C8—C7—N2 114.21 (17) H17B—C17—H17C 109.5
C13—N1—C1—C2 10.1 (3) N1—C1—C2—C3 178.67 (18)
C13—N1—C1—C6 −170.50 (17) C1—C6—C5—C4 0.4 (3)
C14—O2—C13—O1 5.5 (3) N2—C6—C5—C4 −177.51 (18)
C14—O2—C13—N1 −173.54 (16) C12—C11—C10—N2 −149 (4)
C1—N1—C13—O1 −2.8 (3) C6—N2—C10—C11 157.11 (15)
C1—N1—C13—O2 176.26 (16) C7—N2—C10—C11 −71.6 (2)
C2—C1—C6—C5 0.5 (3) C1—C2—C3—C4 0.0 (3)
N1—C1—C6—C5 −178.92 (16) C9—C8—C7—N2 46 (6)
C2—C1—C6—N2 178.52 (16) C6—N2—C7—C8 70.5 (2)
N1—C1—C6—N2 −0.9 (2) C10—N2—C7—C8 −60.6 (2)
C7—N2—C6—C5 −96.4 (2) C13—O2—C14—C17 57.2 (3)
C10—N2—C6—C5 34.0 (2) C13—O2—C14—C16 −66.8 (2)
C7—N2—C6—C1 85.68 (18) C13—O2—C14—C15 176.18 (18)
C10—N2—C6—C1 −143.86 (16) C6—C5—C4—C3 −1.1 (3)
C6—C1—C2—C3 −0.7 (3) C2—C3—C4—C5 0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10B···O1i 0.97 2.55 3.512 (2) 171
C9—H9···O1ii 0.93 2.28 3.194 (3) 166
C2—H2···O1 0.93 2.32 2.911 (3) 121
N1—HN1···N2 0.810 (19) 2.28 (2) 2.703 (2) 114 (2)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2008).

References

  1. Diederich, F., Stang, P. J. & Tykwinski, R. R. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science Weinheim: Wiley-VCH.
  2. Lam, J., Bretel, H., Arnason, T. & Hansen, L. (1988). Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds Amsterdam: Elsevier.
  3. Lilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109–2118. [DOI] [PubMed]
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Patai, S. (1994). Chemistry of Triple-Bonded Functional Groups New York: Wiley.
  7. Rostovtsev, V. V., Green, L.-G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smith, B. D., Haller, K. J. & Shang, M. (1993). J. Org. Chem. 58, 6905–6907.
  10. Stang, P. J. & Diederich, F. (1995). Modern Acetylene Chemistry Weinheim: VCH.
  11. Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811016862/zj2008sup1.cif

e-67-o1382-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811016862/zj2008Isup2.hkl

e-67-o1382-Isup2.hkl (177.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811016862/zj2008Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES