Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):m771. doi: 10.1107/S1600536811018058

Bis{2-[4-(methyl­sulfan­yl)phen­yl]-1H-benzimidazol-3-ium} tetra­bromido­cadmate(II) ethanol monosolvate

M N Manjunatha a, Mohamed Ziaulla a, Noor Shahina Begum a,*, K R Nagasundara a
PMCID: PMC3120599  PMID: 21754655

Abstract

In the anion of the title compound, (C14H13N2S)2[CdBr4]·C2H5OH, the CdII atom is in a distorted tetra­hedral environment and one of the Br atoms is disordered over three sites with site-occupancy factors of 0.828 (5), 0.106 (3) and 0.068 (4). In the crystal, inter­molecular N—H⋯O, C—H⋯O and N—H⋯Br inter­actions result in a two-dimensional polymeric network extending parallel to (010).

Related literature

For general background to benzimidazole derivatives, see: Huang & Scarborough (1999); Preston (1974); Zarrinmayeh et al. (1998); Zhu et al. (2000). For related structures, see: Ziaulla et al. (2011). For hydrogen bonding, see: Bernstein et al. (1995); Nardelli (1983).graphic file with name e-67-0m771-scheme1.jpg

Experimental

Crystal data

  • (C14H13N2S)2[CdBr4]·C2H6O

  • M r = 960.76

  • Orthorhombic, Inline graphic

  • a = 22.1321 (15) Å

  • b = 13.8746 (10) Å

  • c = 22.2594 (16) Å

  • V = 6835.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.47 mm−1

  • T = 123 K

  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.408, T max = 0.439

  • 93968 measured reflections

  • 7467 independent reflections

  • 5951 reflections with I > 2σ(I)

  • R int = 0.084

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.079

  • S = 0.79

  • 7467 reflections

  • 407 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018058/ds2093sup1.cif

e-67-0m771-sup1.cif (28.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018058/ds2093Isup2.hkl

e-67-0m771-Isup2.hkl (358.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br3 0.79 (7) 2.51 (7) 3.272 (5) 164 (5)
N2—H2N⋯Br2i 0.81 (7) 2.50 (7) 3.267 (4) 160 (5)
N4—H4N⋯O1ii 0.83 (7) 1.88 (7) 2.679 (6) 161 (6)
C4—H4⋯O1ii 0.95 2.55 3.464 (8) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and Department of Science and Technology, (DST), India, for the data collection facility under the IRHPA–DST program. MNM thanks the M. S. Ramaiah Institute of Technology, Bangalore, for their support and encouragement.

supplementary crystallographic information

Comment

Benzimidazole derivatives are effective against the human cytomegalo virus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998). In addition, benzimidazole derivatives exhibit a number of important pharmacological properties, such as antihistaminic, anti-ulcerative, antiallergic and antipyretic. The described methods for the synthesis of benzimidazoles make use of solid-phase synthesis via o-nitroanilines (Preston et al., 1974; Huang et al., 1999) or the condensation of o-phenylenediamines with carboxylic acid derivatives, aldehydes and aryl halides. The benzimidazole derivative has been used as a ligand for complexation with cadmium metal to give the above metal complex. In the title compound, as shown in Fig. 1, there are two cation,one tetrabormocadmate(II) anion and an ethanol molecule in the asymmetric unit. One of the coordinated bromine atom Br4 of the anion is disordered over three sites (Br4A/Br4B/Br4C) with site occupancy factors 0.83, 0,11 and 0.06 resulting in one major and two minor components.The CdII atom has a distorted tetrahedral geometry, coordinating with four terminal bromine atoms with the bond lengths in the range 2.5616 (7)Å to 2.6177 (6) Å. The Br—Cd—Br bond angles are between 111.37 (3)° and 107.14 (2)°, The benzimidazole and thiomethyl phenyl rings are virtually planar and inclined at an dihedral angle 5.19 (2)°. The molecular structure is primarly stablised by intramolecular N—H···Br interactions. The bond lengths and angles for the benzimidazole moiety of the molecule are in good agreement, within experimental errors, with those observed in other benzimidazole derivatives (Ziaulla et al., 2011). Further, the crystal structure is stabilized by intermolecular N—H···O, C—H···O and N—H···Br hydrogen bonds.

Experimental

An ethanolic solution (15 ml) of the 2-(4-Methyl sulfanyl phenyl)-1H- benzimidazole) (0.960 mg, 2 mmol) was added to a solution of cadmium(II) bromide (0.272 mg, 1 mmol) in ethanol (25 ml). The mixture was then treated with 48% HBr (2–3 ml) followed by liquid Br2 (2–3 ml). The mixture was refluxed for nearly six hours during which yellow crystals suitable for X-ray analysis were obtained. The crystals were washed with cold ethanol and dried in vacuum over P2O5. (yield 1.23 mg, 85%).

Refinement

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.83 and C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(N/C).

Figures

Fig. 1.

Fig. 1.

ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

Crystal data

(C14H13N2S)2[CdBr4]·C2H6O F(000) = 3744
Mr = 960.76 Dx = 1.867 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7467 reflections
a = 22.1321 (15) Å θ = 1.8–27.0°
b = 13.8746 (10) Å µ = 5.47 mm1
c = 22.2594 (16) Å T = 123 K
V = 6835.3 (8) Å3 Block, yellow
Z = 8 0.20 × 0.18 × 0.18 mm

Data collection

Bruker SMART APEX CCD detector diffractometer 7467 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5951 reflections with I > 2σ(I)
graphite Rint = 0.084
ω scans θmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −28→28
Tmin = 0.408, Tmax = 0.439 k = −17→17
93968 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 0.79 w = 1/[σ2(Fo2) + (0.0318P)2 + 49.2262P] where P = (Fo2 + 2Fc2)/3
7467 reflections (Δ/σ)max = 0.001
407 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.69 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.348496 (11) 0.21808 (2) 0.361336 (13) 0.02080 (7)
Br1 0.326079 (18) 0.11642 (3) 0.26634 (2) 0.02983 (11)
Br2 0.399388 (19) 0.11298 (3) 0.441935 (19) 0.02699 (10)
Br3 0.425609 (17) 0.35205 (3) 0.330092 (18) 0.02342 (9)
Br4A 0.25223 (3) 0.29865 (10) 0.40079 (6) 0.0445 (4) 0.828 (5)
Br4B 0.2514 (2) 0.2592 (6) 0.4250 (3) 0.0302 (17)* 0.106 (3)
Br4C 0.2621 (4) 0.3426 (10) 0.3968 (3) 0.028 (3)* 0.068 (4)
S1 0.11862 (4) 0.36770 (8) 0.16669 (5) 0.0261 (2)
S2 0.64644 (5) 0.09455 (8) 0.43078 (5) 0.0259 (2)
N1 0.42680 (14) 0.3486 (2) 0.18313 (16) 0.0184 (7)
H1N 0.4190 (18) 0.346 (3) 0.217 (2) 0.011 (11)*
N2 0.41912 (14) 0.3569 (2) 0.08615 (16) 0.0172 (7)
H2N 0.405 (2) 0.362 (3) 0.051 (2) 0.022 (12)*
N3 0.45281 (14) 0.1032 (2) 0.19059 (16) 0.0186 (7)
H3N 0.429 (2) 0.100 (4) 0.218 (2) 0.038 (15)*
N4 0.53761 (15) 0.1058 (2) 0.14156 (16) 0.0208 (7)
H4N 0.575 (2) 0.103 (3) 0.136 (2) 0.034 (13)*
O1 0.15209 (14) 0.1207 (3) 0.39651 (19) 0.0460 (9)
H1 0.1697 0.1741 0.3994 0.069*
C1 0.72537 (18) 0.1017 (3) 0.4124 (2) 0.0306 (10)
H1A 0.7375 0.0434 0.3907 0.046*
H1B 0.7491 0.1073 0.4494 0.046*
H1C 0.7326 0.1583 0.3871 0.046*
C2 0.61084 (17) 0.0962 (3) 0.36033 (19) 0.0194 (8)
C3 0.64147 (17) 0.0996 (3) 0.3056 (2) 0.0229 (9)
H3 0.6844 0.1015 0.3049 0.027*
C4 0.60955 (16) 0.1002 (3) 0.25272 (19) 0.0214 (8)
H4 0.6307 0.1015 0.2156 0.026*
C5 0.54640 (17) 0.0990 (3) 0.25268 (18) 0.0184 (8)
C6 0.51621 (16) 0.0957 (3) 0.30770 (18) 0.0196 (8)
H6 0.4733 0.0944 0.3084 0.024*
C7 0.54755 (17) 0.0943 (3) 0.36072 (19) 0.0212 (8)
H7 0.5264 0.0920 0.3978 0.025*
C8 0.51336 (16) 0.1021 (3) 0.19612 (18) 0.0181 (8)
C9 0.49220 (16) 0.1105 (3) 0.09894 (18) 0.0205 (8)
C10 0.43776 (17) 0.1091 (3) 0.13000 (18) 0.0186 (8)
C11 0.38240 (17) 0.1154 (3) 0.1008 (2) 0.0234 (9)
H11 0.3452 0.1145 0.1222 0.028*
C12 0.38445 (18) 0.1230 (3) 0.0395 (2) 0.0252 (9)
H12 0.3476 0.1283 0.0179 0.030*
C13 0.43935 (19) 0.1233 (3) 0.0071 (2) 0.0279 (9)
H13 0.4386 0.1280 −0.0354 0.034*
C14 0.49412 (19) 0.1170 (3) 0.0366 (2) 0.0271 (9)
H14 0.5313 0.1170 0.0154 0.033*
C15 0.08636 (17) 0.3561 (3) 0.0930 (2) 0.0263 (9)
H15A 0.1001 0.4096 0.0677 0.039*
H15B 0.0422 0.3575 0.0959 0.039*
H15C 0.0992 0.2949 0.0751 0.039*
C16 0.19661 (16) 0.3623 (3) 0.15389 (19) 0.0209 (8)
C17 0.22338 (16) 0.3494 (3) 0.09802 (19) 0.0203 (8)
H17 0.1987 0.3427 0.0633 0.024*
C18 0.28564 (16) 0.3464 (3) 0.09239 (18) 0.0197 (8)
H18 0.3034 0.3379 0.0539 0.024*
C19 0.32244 (16) 0.3556 (3) 0.14304 (18) 0.0182 (8)
C20 0.29562 (17) 0.3688 (3) 0.19946 (19) 0.0233 (8)
H20 0.3202 0.3754 0.2342 0.028*
C21 0.23346 (18) 0.3722 (3) 0.2046 (2) 0.0253 (9)
H21 0.2155 0.3813 0.2430 0.030*
C22 0.38773 (16) 0.3542 (3) 0.13739 (17) 0.0172 (7)
C23 0.48535 (16) 0.3490 (3) 0.16087 (18) 0.0180 (8)
C24 0.54085 (17) 0.3457 (3) 0.1900 (2) 0.0253 (9)
H24 0.5440 0.3420 0.2325 0.030*
C25 0.59109 (18) 0.3483 (3) 0.1532 (2) 0.0301 (10)
H25 0.6301 0.3463 0.1710 0.036*
C26 0.58653 (17) 0.3537 (3) 0.0909 (2) 0.0273 (9)
H26 0.6225 0.3555 0.0676 0.033*
C27 0.53125 (17) 0.3566 (3) 0.0619 (2) 0.0235 (9)
H27 0.5280 0.3602 0.0194 0.028*
C28 0.48085 (16) 0.3539 (3) 0.09907 (18) 0.0174 (7)
C29 0.22850 (16) 0.0414 (3) 0.45435 (18) 0.0460 (13)
H29A 0.2535 0.0992 0.4589 0.069*
H29B 0.2542 −0.0160 0.4559 0.069*
H29C 0.1988 0.0388 0.4869 0.069*
C30 0.19621 (16) 0.0449 (3) 0.39490 (18) 0.0428 (12)
H30A 0.2256 0.0570 0.3622 0.051*
H30B 0.1761 −0.0176 0.3871 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01375 (12) 0.02995 (15) 0.01871 (15) 0.00150 (11) −0.00061 (11) −0.00047 (12)
Br1 0.01902 (18) 0.0486 (3) 0.0218 (2) −0.00511 (18) 0.00033 (16) −0.00842 (19)
Br2 0.0268 (2) 0.0371 (2) 0.0170 (2) 0.00091 (17) −0.00239 (16) 0.00446 (17)
Br3 0.02397 (19) 0.0292 (2) 0.0171 (2) −0.00377 (16) −0.00242 (16) 0.00177 (16)
Br4A 0.0152 (3) 0.0288 (7) 0.0897 (8) 0.0002 (3) 0.0138 (3) −0.0106 (5)
S1 0.0164 (4) 0.0349 (6) 0.0269 (6) 0.0037 (4) 0.0056 (4) 0.0071 (5)
S2 0.0231 (5) 0.0303 (5) 0.0241 (6) 0.0015 (4) −0.0071 (4) −0.0005 (4)
N1 0.0197 (16) 0.0236 (17) 0.0121 (18) 0.0033 (13) −0.0002 (13) 0.0013 (14)
N2 0.0143 (14) 0.0235 (16) 0.0137 (18) −0.0019 (12) −0.0029 (13) −0.0010 (13)
N3 0.0138 (15) 0.0223 (17) 0.0196 (19) −0.0024 (12) 0.0015 (13) 0.0029 (14)
N4 0.0147 (15) 0.0261 (17) 0.0218 (19) 0.0031 (13) 0.0018 (13) 0.0018 (14)
O1 0.0256 (16) 0.052 (2) 0.060 (3) 0.0025 (15) −0.0133 (17) −0.010 (2)
C1 0.0209 (19) 0.031 (2) 0.040 (3) 0.0003 (17) −0.0128 (19) 0.002 (2)
C2 0.0216 (18) 0.0139 (17) 0.023 (2) 0.0013 (14) −0.0059 (16) 0.0002 (15)
C3 0.0143 (17) 0.024 (2) 0.030 (2) 0.0039 (15) 0.0001 (16) 0.0005 (17)
C4 0.0147 (17) 0.027 (2) 0.023 (2) 0.0007 (15) 0.0014 (15) −0.0019 (17)
C5 0.0180 (17) 0.0178 (18) 0.019 (2) 0.0018 (14) 0.0005 (15) 0.0007 (15)
C6 0.0149 (17) 0.0217 (19) 0.022 (2) 0.0015 (14) 0.0024 (15) −0.0014 (16)
C7 0.0180 (17) 0.0232 (19) 0.022 (2) 0.0003 (15) 0.0050 (16) −0.0001 (16)
C8 0.0168 (17) 0.0167 (18) 0.021 (2) −0.0006 (14) 0.0010 (15) 0.0025 (16)
C9 0.0180 (18) 0.0240 (19) 0.020 (2) 0.0044 (15) −0.0004 (15) −0.0003 (16)
C10 0.0219 (18) 0.0176 (18) 0.016 (2) −0.0021 (14) 0.0003 (15) 0.0011 (15)
C11 0.0181 (18) 0.0229 (19) 0.029 (2) −0.0014 (15) −0.0034 (16) −0.0016 (17)
C12 0.026 (2) 0.024 (2) 0.026 (2) 0.0024 (16) −0.0112 (17) −0.0067 (17)
C13 0.035 (2) 0.033 (2) 0.015 (2) 0.0056 (18) −0.0035 (17) −0.0049 (18)
C14 0.027 (2) 0.031 (2) 0.023 (2) 0.0022 (17) 0.0060 (17) −0.0015 (18)
C15 0.0160 (18) 0.034 (2) 0.029 (2) 0.0018 (16) 0.0002 (16) 0.0008 (19)
C16 0.0153 (17) 0.0181 (18) 0.029 (2) 0.0021 (14) 0.0042 (16) 0.0044 (16)
C17 0.0163 (17) 0.0217 (19) 0.023 (2) −0.0010 (14) −0.0014 (16) −0.0011 (16)
C18 0.0169 (17) 0.0224 (19) 0.020 (2) −0.0003 (14) 0.0039 (15) 0.0006 (16)
C19 0.0182 (17) 0.0171 (17) 0.019 (2) 0.0020 (14) 0.0016 (15) 0.0000 (15)
C20 0.0213 (19) 0.028 (2) 0.021 (2) 0.0022 (16) 0.0011 (16) 0.0035 (17)
C21 0.0239 (19) 0.032 (2) 0.020 (2) 0.0040 (16) 0.0048 (17) 0.0045 (18)
C22 0.0224 (18) 0.0138 (17) 0.015 (2) −0.0001 (14) 0.0015 (15) −0.0008 (15)
C23 0.0163 (17) 0.0182 (18) 0.019 (2) −0.0007 (14) −0.0027 (15) −0.0016 (16)
C24 0.0214 (19) 0.031 (2) 0.024 (2) 0.0006 (16) −0.0071 (17) 0.0011 (18)
C25 0.0187 (19) 0.035 (2) 0.036 (3) −0.0032 (17) −0.0103 (18) 0.000 (2)
C26 0.0157 (18) 0.038 (2) 0.028 (2) 0.0009 (16) 0.0009 (16) 0.0081 (19)
C27 0.0196 (18) 0.027 (2) 0.025 (2) 0.0007 (15) 0.0017 (16) 0.0024 (17)
C28 0.0163 (17) 0.0173 (17) 0.019 (2) −0.0005 (14) −0.0048 (15) −0.0011 (15)
C29 0.048 (3) 0.054 (3) 0.036 (3) −0.005 (3) −0.006 (2) −0.003 (3)
C30 0.031 (2) 0.049 (3) 0.049 (3) 0.007 (2) −0.007 (2) −0.009 (3)

Geometric parameters (Å, °)

Cd1—Br4A 2.5612 (6) C9—C14 1.390 (6)
Cd1—Br2 2.5717 (5) C9—C10 1.389 (5)
Cd1—Br1 2.5898 (5) C10—C11 1.390 (5)
Cd1—Br3 2.6175 (5) C11—C12 1.370 (6)
Cd1—Br4B 2.636 (5) C11—H11 0.9500
Cd1—Br4C 2.695 (8) C12—C13 1.413 (6)
Br4A—Br4C 0.654 (14) C12—H12 0.9500
Br4A—Br4B 0.768 (8) C13—C14 1.382 (6)
Br4B—Br4C 1.338 (16) C13—H13 0.9500
S1—C16 1.751 (4) C14—H14 0.9500
S1—C15 1.797 (4) C15—H15A 0.9800
S2—C2 1.755 (4) C15—H15B 0.9800
S2—C1 1.797 (4) C15—H15C 0.9800
N1—C22 1.338 (5) C16—C17 1.389 (6)
N1—C23 1.387 (5) C16—C21 1.400 (6)
N1—H1N 0.77 (4) C17—C18 1.384 (5)
N2—C22 1.336 (5) C17—H17 0.9500
N2—C28 1.397 (4) C18—C19 1.397 (5)
N2—H2N 0.84 (5) C18—H18 0.9500
N3—C8 1.346 (5) C19—C20 1.401 (6)
N3—C10 1.392 (5) C19—C22 1.451 (5)
N3—H3N 0.81 (5) C20—C21 1.381 (5)
N4—C8 1.329 (5) C20—H20 0.9500
N4—C9 1.384 (5) C21—H21 0.9500
N4—H4N 0.84 (5) C23—C28 1.381 (5)
O1—C30 1.435 (5) C23—C24 1.390 (5)
O1—H1 0.8400 C24—C25 1.382 (6)
C1—H1A 0.9800 C24—H24 0.9500
C1—H1B 0.9800 C25—C26 1.392 (6)
C1—H1C 0.9800 C25—H25 0.9500
C2—C3 1.395 (6) C26—C27 1.384 (5)
C2—C7 1.401 (5) C26—H26 0.9500
C3—C4 1.373 (6) C27—C28 1.390 (5)
C3—H3 0.9500 C27—H27 0.9500
C4—C5 1.398 (5) C29—C30 1.5047
C4—H4 0.9500 C29—H29A 0.9800
C5—C6 1.396 (5) C29—H29B 0.9800
C5—C8 1.457 (5) C29—H29C 0.9800
C6—C7 1.369 (6) C30—H30A 0.9900
C6—H6 0.9500 C30—H30B 0.9900
C7—H7 0.9500
Br4A—Cd1—Br2 111.87 (4) C11—C10—N3 131.9 (4)
Br4A—Cd1—Br1 111.00 (2) C12—C11—C10 116.2 (4)
Br2—Cd1—Br1 110.162 (19) C12—C11—H11 121.9
Br4A—Cd1—Br3 108.88 (4) C10—C11—H11 121.9
Br2—Cd1—Br3 107.605 (16) C11—C12—C13 122.5 (4)
Br1—Cd1—Br3 107.142 (17) C11—C12—H12 118.8
Br4A—Cd1—Br4B 16.92 (16) C13—C12—H12 118.8
Br2—Cd1—Br4B 96.01 (16) C14—C13—C12 120.8 (4)
Br1—Cd1—Br4B 113.60 (11) C14—C13—H13 119.6
Br3—Cd1—Br4B 121.39 (17) C12—C13—H13 119.6
Br4A—Cd1—Br4C 14.0 (3) C13—C14—C9 116.8 (4)
Br2—Cd1—Br4C 118.01 (18) C13—C14—H14 121.6
Br1—Cd1—Br4C 116.9 (2) C9—C14—H14 121.6
Br3—Cd1—Br4C 94.9 (3) S1—C15—H15A 109.5
Br4B—Cd1—Br4C 29.0 (3) S1—C15—H15B 109.5
Br4C—Br4A—Br4B 140.2 (8) H15A—C15—H15B 109.5
Br4C—Br4A—Cd1 94.7 (6) S1—C15—H15C 109.5
Br4B—Br4A—Cd1 87.1 (4) H15A—C15—H15C 109.5
Br4A—Br4B—Br4C 18.3 (5) H15B—C15—H15C 109.5
Br4A—Br4B—Cd1 76.0 (4) C17—C16—C21 119.1 (3)
Br4C—Br4B—Cd1 77.9 (4) C17—C16—S1 124.9 (3)
Br4A—Br4C—Br4B 21.6 (5) C21—C16—S1 116.0 (3)
Br4A—Br4C—Cd1 71.3 (6) C18—C17—C16 120.6 (4)
Br4B—Br4C—Cd1 73.0 (5) C18—C17—H17 119.7
C16—S1—C15 103.9 (2) C16—C17—H17 119.7
C2—S2—C1 103.4 (2) C17—C18—C19 120.3 (4)
C22—N1—C23 109.4 (3) C17—C18—H18 119.9
C22—N1—H1N 127 (3) C19—C18—H18 119.9
C23—N1—H1N 124 (3) C18—C19—C20 119.2 (3)
C22—N2—C28 109.4 (3) C18—C19—C22 120.6 (4)
C22—N2—H2N 127 (3) C20—C19—C22 120.1 (4)
C28—N2—H2N 124 (3) C21—C20—C19 120.1 (4)
C8—N3—C10 109.1 (3) C21—C20—H20 120.0
C8—N3—H3N 126 (4) C19—C20—H20 120.0
C10—N3—H3N 125 (4) C20—C21—C16 120.6 (4)
C8—N4—C9 109.6 (3) C20—C21—H21 119.7
C8—N4—H4N 122 (3) C16—C21—H21 119.7
C9—N4—H4N 128 (3) N2—C22—N1 108.4 (3)
C30—O1—H1 109.5 N2—C22—C19 126.3 (4)
S2—C1—H1A 109.5 N1—C22—C19 125.3 (4)
S2—C1—H1B 109.5 C28—C23—N1 106.8 (3)
H1A—C1—H1B 109.5 C28—C23—C24 122.0 (4)
S2—C1—H1C 109.5 N1—C23—C24 131.2 (4)
H1A—C1—H1C 109.5 C25—C24—C23 115.7 (4)
H1B—C1—H1C 109.5 C25—C24—H24 122.1
C3—C2—C7 119.5 (4) C23—C24—H24 122.1
C3—C2—S2 124.2 (3) C24—C25—C26 122.3 (4)
C7—C2—S2 116.3 (3) C24—C25—H25 118.9
C4—C3—C2 119.9 (3) C26—C25—H25 118.9
C4—C3—H3 120.0 C27—C26—C25 122.0 (4)
C2—C3—H3 120.0 C27—C26—H26 119.0
C3—C4—C5 121.0 (4) C25—C26—H26 119.0
C3—C4—H4 119.5 C28—C27—C26 115.5 (4)
C5—C4—H4 119.5 C28—C27—H27 122.2
C6—C5—C4 118.6 (4) C26—C27—H27 122.2
C6—C5—C8 121.3 (3) C23—C28—C27 122.5 (3)
C4—C5—C8 120.1 (4) C23—C28—N2 106.1 (3)
C7—C6—C5 120.9 (3) C27—C28—N2 131.4 (4)
C7—C6—H6 119.5 C30—C29—H29A 109.5
C5—C6—H6 119.5 C30—C29—H29B 109.5
C6—C7—C2 120.1 (4) H29A—C29—H29B 109.5
C6—C7—H7 120.0 C30—C29—H29C 109.5
C2—C7—H7 120.0 H29A—C29—H29C 109.5
N4—C8—N3 108.6 (3) H29B—C29—H29C 109.5
N4—C8—C5 126.0 (3) O1—C30—C29 108.9 (2)
N3—C8—C5 125.4 (4) O1—C30—H30A 109.9
N4—C9—C14 131.7 (4) C29—C30—H30A 109.9
N4—C9—C10 106.7 (3) O1—C30—H30B 109.9
C14—C9—C10 121.6 (4) C29—C30—H30B 109.9
C9—C10—C11 122.1 (4) H30A—C30—H30B 108.3
C9—C10—N3 106.0 (3)
Br2—Cd1—Br4A—Br4C 118.8 (7) C8—N4—C9—C14 178.9 (4)
Br1—Cd1—Br4A—Br4C −117.7 (7) C8—N4—C9—C10 −0.2 (4)
Br3—Cd1—Br4A—Br4C 0.0 (7) N4—C9—C10—C11 178.3 (3)
Br4B—Cd1—Br4A—Br4C 140.1 (8) C14—C9—C10—C11 −1.0 (6)
Br2—Cd1—Br4A—Br4B −21.3 (4) N4—C9—C10—N3 −0.2 (4)
Br1—Cd1—Br4A—Br4B 102.2 (4) C14—C9—C10—N3 −179.4 (4)
Br3—Cd1—Br4A—Br4B −140.1 (4) C8—N3—C10—C9 0.6 (4)
Br4C—Cd1—Br4A—Br4B −140.1 (8) C8—N3—C10—C11 −177.7 (4)
Cd1—Br4A—Br4B—Br4C 93.9 (10) C9—C10—C11—C12 0.1 (6)
Br4C—Br4A—Br4B—Cd1 −93.9 (10) N3—C10—C11—C12 178.1 (4)
Br2—Cd1—Br4B—Br4A 160.2 (4) C10—C11—C12—C13 0.8 (6)
Br1—Cd1—Br4B—Br4A −84.7 (4) C11—C12—C13—C14 −0.8 (6)
Br3—Cd1—Br4B—Br4A 45.3 (4) C12—C13—C14—C9 −0.1 (6)
Br4C—Cd1—Br4B—Br4A 18.6 (5) N4—C9—C14—C13 −178.1 (4)
Br4A—Cd1—Br4B—Br4C −18.6 (5) C10—C9—C14—C13 0.9 (6)
Br2—Cd1—Br4B—Br4C 141.6 (4) C15—S1—C16—C17 −1.4 (4)
Br1—Cd1—Br4B—Br4C −103.3 (4) C15—S1—C16—C21 178.5 (3)
Br3—Cd1—Br4B—Br4C 26.7 (5) C21—C16—C17—C18 0.0 (6)
Cd1—Br4A—Br4C—Br4B −91.1 (9) S1—C16—C17—C18 179.9 (3)
Br4B—Br4A—Br4C—Cd1 91.1 (9) C16—C17—C18—C19 0.4 (6)
Cd1—Br4B—Br4C—Br4A 81.9 (10) C17—C18—C19—C20 −0.6 (6)
Br4A—Br4B—Br4C—Cd1 −81.9 (10) C17—C18—C19—C22 −178.8 (3)
Br2—Cd1—Br4C—Br4A −67.1 (7) C18—C19—C20—C21 0.3 (6)
Br1—Cd1—Br4C—Br4A 68.0 (7) C22—C19—C20—C21 178.6 (4)
Br3—Cd1—Br4C—Br4A −180.0 (7) C19—C20—C21—C16 0.1 (6)
Br4B—Cd1—Br4C—Br4A −22.6 (5) C17—C16—C21—C20 −0.3 (6)
Br4A—Cd1—Br4C—Br4B 22.6 (5) S1—C16—C21—C20 179.8 (3)
Br2—Cd1—Br4C—Br4B −44.5 (5) C28—N2—C22—N1 −0.6 (4)
Br1—Cd1—Br4C—Br4B 90.6 (4) C28—N2—C22—C19 −179.7 (3)
Br3—Cd1—Br4C—Br4B −157.4 (4) C23—N1—C22—N2 0.8 (4)
C1—S2—C2—C3 1.6 (4) C23—N1—C22—C19 179.9 (3)
C1—S2—C2—C7 −178.1 (3) C18—C19—C22—N2 9.0 (6)
C7—C2—C3—C4 −0.6 (6) C20—C19—C22—N2 −169.2 (4)
S2—C2—C3—C4 179.7 (3) C18—C19—C22—N1 −169.9 (4)
C2—C3—C4—C5 1.0 (6) C20—C19—C22—N1 11.8 (6)
C3—C4—C5—C6 −0.9 (6) C22—N1—C23—C28 −0.7 (4)
C3—C4—C5—C8 178.5 (3) C22—N1—C23—C24 179.1 (4)
C4—C5—C6—C7 0.4 (6) C28—C23—C24—C25 0.4 (6)
C8—C5—C6—C7 −179.0 (4) N1—C23—C24—C25 −179.4 (4)
C5—C6—C7—C2 0.0 (6) C23—C24—C25—C26 −0.1 (6)
C3—C2—C7—C6 0.1 (6) C24—C25—C26—C27 −0.2 (7)
S2—C2—C7—C6 179.8 (3) C25—C26—C27—C28 0.1 (6)
C9—N4—C8—N3 0.6 (4) N1—C23—C28—C27 179.3 (3)
C9—N4—C8—C5 −178.4 (4) C24—C23—C28—C27 −0.5 (6)
C10—N3—C8—N4 −0.8 (4) N1—C23—C28—N2 0.3 (4)
C10—N3—C8—C5 178.3 (3) C24—C23—C28—N2 −179.5 (4)
C6—C5—C8—N4 179.6 (4) C26—C27—C28—C23 0.2 (6)
C4—C5—C8—N4 0.2 (6) C26—C27—C28—N2 178.9 (4)
C6—C5—C8—N3 0.8 (6) C22—N2—C28—C23 0.2 (4)
C4—C5—C8—N3 −178.6 (4) C22—N2—C28—C27 −178.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···Br3 0.79 (7) 2.51 (7) 3.272 (5) 164 (5)
N2—H2N···Br2i 0.81 (7) 2.50 (7) 3.267 (4) 160 (5)
N4—H4N···O1ii 0.83 (7) 1.88 (7) 2.679 (6) 161 (6)
C4—H4···O1ii 0.95 2.55 3.464 (8) 160

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2093).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.
  2. Bruker. (1998). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Huang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665–2668.
  6. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  7. Preston, P. N. (1974). Chem. Rev. 74, 279–314.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  11. Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719. [DOI] [PubMed]
  12. Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437. [DOI] [PubMed]
  13. Ziaulla, M., Manjunatha, M. N., Sankolli, R., Nagasundara, K. R. & Begum, N. S. (2011). Acta Cryst. E67, o341–o342. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018058/ds2093sup1.cif

e-67-0m771-sup1.cif (28.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018058/ds2093Isup2.hkl

e-67-0m771-Isup2.hkl (358.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES