Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):o1433–o1434. doi: 10.1107/S1600536811017363

N,N-Diethyl-2-hy­droxy­ethanaminium 2,6-dioxo-5-(2,4,6-trinitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate dihydrate

Manickam Buvaneswari a, Doraisamyraja Kalaivani a,*
PMCID: PMC3120611  PMID: 21754812

Abstract

In the title mol­ecular salt, C6H16NO+·C10H4N5O9 ·2H2O, which crystallizes as a dihydrate, O—H⋯O hydrogen bonds link the barbiturate anion, the ethanaminium cation and the water mol­ecules of crystallization. The dihedral angle between the rings in the anion is 43.71 (8)°. In the crystal, an R 2 2(8) ring motif hydrogen-bonding pattern is also found involving inversion-related barbiturate rings with N—H⋯O hydrogen bonds. As a result of the various hydrogen bonds an infinite two-dimensional network, propagating in (10Inline graphic), is formed.

Related literature

For the anti-epileptic properties of barbiturates, see: Tripathi (2009); Kalaivani & Malarvizhi (2009); Kalaivani et al. (2008). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995). graphic file with name e-67-o1433-scheme1.jpg

Experimental

Crystal data

  • C6H16NO+·C10H4N5O9 ·2H2O

  • M r = 492.41

  • Monoclinic, Inline graphic

  • a = 8.3792 (2) Å

  • b = 21.7673 (4) Å

  • c = 12.0894 (2) Å

  • β = 96.118 (1)°

  • V = 2192.46 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999) T min = 0.892, T max = 0.975

  • 23280 measured reflections

  • 4686 independent reflections

  • 3492 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.131

  • S = 1.08

  • 4686 reflections

  • 338 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017363/su2264sup1.cif

e-67-o1433-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017363/su2264Isup2.hkl

e-67-o1433-Isup2.hkl (229.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811017363/su2264Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O2Wi 0.82 2.05 2.792 (2) 150
O10—H10⋯O4ii 0.82 2.49 3.0648 (19) 129
N6—H6⋯O1Wiii 0.91 (3) 1.95 (3) 2.846 (2) 170 (2)
N1—H1A⋯O10iv 0.85 (2) 2.05 (3) 2.884 (2) 166 (2)
N2—H2A⋯O2v 0.83 (2) 2.03 (2) 2.847 (2) 173 (2)
O1W—H2W⋯O2v 0.91 (1) 1.90 (2) 2.7431 (19) 154 (2)
O2W—H4W⋯O1Wvi 0.93 (1) 1.94 (2) 2.796 (3) 152 (3)
O1W—H1W⋯O3 0.91 (1) 1.91 (1) 2.7783 (17) 160 (2)
O2W—H3W⋯O1 0.93 (1) 1.89 (2) 2.792 (2) 162 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors are thankful to the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Comment

Most of the barbituric acid derivatives (barbiturates) are antiepileptic agents (Tripathi, 2009). The barbiturate prepared in our laboratory from 1-chloro-2,4-dinitrobenzene was obtained as maroon blocks when recrystallized from absolute alcohol (Kalaivani & Malarvizhi, 2009) and has antiepileptic activity (Kalaivani et al., 2008). We report here the crystal structure of a related barbiturate obtained from 1-chloro-2,4,6-trinitrobenzene (TNCB) and barbituric acid in the presence of 2(N,N-diethyl) ethanolamine. It shows an extra ordinary stability and very high solubility in dipolar aprotic solvents, such as dimethyl sulfoxide, which may be attributed to its salt-like structure.

The molecular structure of the title compound is illustrated in Fig. 1. The anion and cation are involved in O—H···O hydrogen bonds with the water molecules of crystallization (Table 1).

In the crystal a R22(8) ring motif hydrogen bonding pattern (Bernstein et al., 1995) is also found involving inversion-related barbiturate rings with N—H···O hydrogen bonds (Table 1 and Fig. 2). These various hydrogen bonds lead finally to the formation of an infinite two-dimensional network propagating in (10–1).

Experimental

Equimolar solutions of 1-chloro-2,4,6-trinitrobenzene (TNCB) and barbituric acid were prepared in ethanol and mixed. A three fold excess of 2(N,N-diethyl) ethanolamine was then added and the mixture was shaken well for 5–6 h. Maroon red coloured crystals were obtained after 24 hrs. The crystals were filtered and recrystallized from absolute alcohol (yield of pure crystals 70%, m.p. 507 K). Red block-like single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an ethanolic solution of the title compound at room temperature.

Refinement

The NH and water molecule H-atoms were located in difference electron density maps; the NH H-atoms were freely refined, while the water H-atoms were treated as riding atoms. The hydroxyl and C-bound H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.93, 0.96, and 0.97 Å for CH(aromatic), CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C) where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. The O—H···O and N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; C-bound H-atoms have been omitted for clarity).

Crystal data

C6H16NO+·C10H4N5O9·2H2O F(000) = 1032
Mr = 492.41 Dx = 1.492 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5467 reflections
a = 8.3792 (2) Å θ = 2.6–24.8°
b = 21.7673 (4) Å µ = 0.13 mm1
c = 12.0894 (2) Å T = 293 K
β = 96.118 (1)° Block, red
V = 2192.46 (8) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4686 independent reflections
Radiation source: fine-focus sealed tube 3492 reflections with I > 2σ(I)
graphite Rint = 0.037
ω and φ scans θmax = 26.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker 1999) h = −10→10
Tmin = 0.892, Tmax = 0.975 k = −27→27
23280 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.4079P] where P = (Fo2 + 2Fc2)/3
4686 reflections (Δ/σ)max < 0.001
338 parameters Δρmax = 0.36 e Å3
6 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7186 (2) 0.41169 (8) 0.30054 (14) 0.0306 (4)
C2 0.5959 (2) 0.43691 (8) 0.11393 (15) 0.0388 (4)
C3 0.6102 (2) 0.51490 (7) 0.25866 (14) 0.0300 (4)
C4 0.6886 (2) 0.47250 (7) 0.33442 (14) 0.0292 (4)
C5 0.73603 (19) 0.49194 (7) 0.44825 (13) 0.0266 (3)
C6 0.81044 (19) 0.54867 (8) 0.47588 (14) 0.0302 (4)
C7 0.8515 (2) 0.56930 (8) 0.58266 (15) 0.0356 (4)
H7 0.8973 0.6079 0.5960 0.043*
C8 0.8230 (2) 0.53139 (8) 0.66853 (15) 0.0350 (4)
C9 0.7534 (2) 0.47444 (8) 0.65025 (15) 0.0327 (4)
H9 0.7364 0.4487 0.7092 0.039*
C10 0.70989 (19) 0.45705 (7) 0.54204 (14) 0.0286 (4)
C11 0.4444 (3) 0.22119 (12) 0.27523 (19) 0.0554 (6)
H11A 0.5560 0.2339 0.2822 0.067*
H11B 0.4334 0.1863 0.2251 0.067*
C12 0.3427 (4) 0.27264 (14) 0.2257 (2) 0.0765 (8)
H12A 0.2315 0.2631 0.2295 0.115*
H12B 0.3616 0.2782 0.1494 0.115*
H12C 0.3695 0.3098 0.2664 0.115*
C13 0.4327 (3) 0.25114 (9) 0.47133 (18) 0.0488 (5)
H13A 0.3762 0.2878 0.4436 0.059*
H13B 0.5466 0.2604 0.4794 0.059*
C14 0.3828 (3) 0.23605 (10) 0.58351 (17) 0.0475 (5)
H14A 0.4519 0.2039 0.6172 0.057*
H14B 0.3969 0.2721 0.6307 0.057*
C15 0.4762 (3) 0.14050 (9) 0.42105 (19) 0.0504 (5)
H15A 0.4378 0.1276 0.4903 0.060*
H15B 0.4401 0.1103 0.3648 0.060*
C16 0.6552 (3) 0.14057 (14) 0.4358 (2) 0.0731 (8)
H16A 0.6949 0.1503 0.3663 0.110*
H16B 0.6933 0.1007 0.4602 0.110*
H16C 0.6926 0.1707 0.4905 0.110*
N1 0.6672 (2) 0.39757 (7) 0.19009 (13) 0.0372 (4)
N2 0.5695 (2) 0.49417 (7) 0.15108 (13) 0.0399 (4)
N3 0.85714 (19) 0.59043 (7) 0.38903 (14) 0.0390 (4)
N4 0.8702 (2) 0.55069 (9) 0.78267 (15) 0.0504 (4)
N5 0.62095 (18) 0.39864 (6) 0.53118 (12) 0.0323 (3)
N6 0.4013 (2) 0.20141 (7) 0.38774 (14) 0.0391 (4)
O1 0.78610 (16) 0.37089 (6) 0.35927 (10) 0.0405 (3)
O2 0.5564 (2) 0.42190 (6) 0.01670 (11) 0.0583 (4)
O1W 0.42307 (17) 0.66131 (6) 0.15158 (11) 0.0433 (3)
O3 0.57236 (15) 0.56815 (5) 0.28132 (10) 0.0351 (3)
O2W 0.9751 (3) 0.27123 (10) 0.4379 (2) 0.1173 (10)
O4 0.8348 (2) 0.64511 (6) 0.40147 (14) 0.0615 (4)
O5 0.92002 (16) 0.56847 (7) 0.31178 (12) 0.0482 (4)
O6 0.9235 (3) 0.60220 (9) 0.79794 (14) 0.0794 (6)
O7 0.8528 (3) 0.51453 (9) 0.85712 (14) 0.0882 (7)
O8 0.66984 (18) 0.35673 (6) 0.59242 (12) 0.0486 (4)
O9 0.50041 (15) 0.39638 (6) 0.46545 (11) 0.0408 (3)
O10 0.22086 (17) 0.21639 (6) 0.57806 (12) 0.0449 (3)
H10 0.1618 0.2438 0.5511 0.071 (8)*
H6 0.294 (3) 0.1935 (11) 0.377 (2) 0.063 (7)*
H1A 0.686 (3) 0.3612 (11) 0.1685 (19) 0.052 (6)*
H2A 0.526 (3) 0.5191 (10) 0.1057 (18) 0.044 (6)*
H1W 0.467 (3) 0.6368 (9) 0.2074 (13) 0.071 (8)*
H2W 0.424 (4) 0.6446 (11) 0.0830 (10) 0.091 (10)*
H4W 0.978 (5) 0.2365 (12) 0.393 (3) 0.162 (18)*
H3W 0.895 (4) 0.2983 (15) 0.411 (3) 0.160 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0348 (9) 0.0271 (8) 0.0296 (9) 0.0051 (7) 0.0016 (7) −0.0002 (7)
C2 0.0517 (11) 0.0312 (9) 0.0317 (9) 0.0083 (8) −0.0043 (8) −0.0032 (8)
C3 0.0314 (8) 0.0280 (8) 0.0301 (9) 0.0034 (7) 0.0004 (7) −0.0016 (7)
C4 0.0326 (9) 0.0261 (8) 0.0279 (8) 0.0042 (7) −0.0011 (7) −0.0002 (7)
C5 0.0244 (8) 0.0238 (8) 0.0306 (8) 0.0049 (6) −0.0014 (6) −0.0006 (6)
C6 0.0292 (8) 0.0260 (8) 0.0347 (9) 0.0010 (6) −0.0005 (7) 0.0006 (7)
C7 0.0334 (9) 0.0296 (9) 0.0425 (10) −0.0024 (7) −0.0016 (7) −0.0068 (8)
C8 0.0330 (9) 0.0385 (10) 0.0318 (9) 0.0007 (7) −0.0046 (7) −0.0087 (8)
C9 0.0334 (9) 0.0329 (9) 0.0306 (9) 0.0022 (7) −0.0021 (7) 0.0028 (7)
C10 0.0282 (8) 0.0234 (8) 0.0332 (9) 0.0010 (6) −0.0017 (6) −0.0008 (7)
C11 0.0560 (13) 0.0660 (15) 0.0457 (12) −0.0002 (11) 0.0114 (10) 0.0030 (11)
C12 0.0832 (19) 0.085 (2) 0.0612 (16) 0.0084 (15) 0.0074 (14) 0.0235 (14)
C13 0.0556 (13) 0.0366 (10) 0.0552 (13) −0.0108 (9) 0.0103 (10) −0.0117 (9)
C14 0.0560 (13) 0.0404 (11) 0.0445 (11) −0.0031 (9) −0.0013 (9) −0.0096 (9)
C15 0.0569 (13) 0.0376 (11) 0.0558 (13) 0.0069 (9) 0.0021 (10) −0.0051 (9)
C16 0.0578 (15) 0.0869 (19) 0.0718 (17) 0.0213 (14) −0.0061 (12) −0.0082 (15)
N1 0.0529 (10) 0.0254 (8) 0.0319 (8) 0.0097 (7) −0.0019 (7) −0.0048 (6)
N2 0.0599 (11) 0.0290 (8) 0.0278 (8) 0.0144 (7) −0.0094 (7) −0.0010 (6)
N3 0.0379 (8) 0.0326 (8) 0.0460 (9) −0.0053 (6) 0.0016 (7) 0.0030 (7)
N4 0.0570 (11) 0.0543 (11) 0.0378 (9) −0.0070 (9) −0.0040 (8) −0.0117 (8)
N5 0.0382 (8) 0.0256 (7) 0.0328 (8) −0.0008 (6) 0.0016 (6) 0.0000 (6)
N6 0.0398 (9) 0.0343 (8) 0.0432 (9) −0.0031 (7) 0.0049 (7) −0.0058 (7)
O1 0.0522 (8) 0.0303 (6) 0.0374 (7) 0.0153 (6) −0.0020 (6) 0.0024 (5)
O2 0.0989 (13) 0.0384 (8) 0.0327 (7) 0.0199 (8) −0.0160 (7) −0.0091 (6)
O1W 0.0544 (8) 0.0367 (7) 0.0372 (8) 0.0126 (6) −0.0024 (6) 0.0005 (6)
O3 0.0445 (7) 0.0252 (6) 0.0340 (6) 0.0100 (5) −0.0029 (5) −0.0019 (5)
O2W 0.142 (2) 0.0625 (13) 0.128 (2) 0.0511 (14) −0.0737 (17) −0.0340 (13)
O4 0.0903 (13) 0.0250 (7) 0.0697 (11) −0.0070 (7) 0.0110 (9) 0.0037 (7)
O5 0.0441 (8) 0.0523 (8) 0.0502 (8) 0.0017 (6) 0.0148 (7) 0.0066 (7)
O6 0.1110 (16) 0.0719 (12) 0.0536 (10) −0.0391 (11) 0.0006 (10) −0.0260 (9)
O7 0.150 (2) 0.0752 (13) 0.0342 (9) −0.0199 (13) −0.0119 (10) −0.0011 (9)
O8 0.0660 (10) 0.0280 (7) 0.0497 (8) −0.0008 (6) −0.0039 (7) 0.0100 (6)
O9 0.0360 (7) 0.0376 (7) 0.0469 (8) −0.0067 (5) −0.0036 (6) −0.0036 (6)
O10 0.0520 (8) 0.0322 (7) 0.0504 (8) −0.0001 (6) 0.0049 (6) 0.0069 (6)

Geometric parameters (Å, °)

C1—O1 1.236 (2) C13—N6 1.485 (2)
C1—N1 1.393 (2) C13—C14 1.497 (3)
C1—C4 1.416 (2) C13—H13A 0.9700
C2—O2 1.231 (2) C13—H13B 0.9700
C2—N1 1.350 (2) C14—O10 1.418 (3)
C2—N2 1.351 (2) C14—H14A 0.9700
C3—O3 1.240 (2) C14—H14B 0.9700
C3—N2 1.385 (2) C15—C16 1.492 (3)
C3—C4 1.412 (2) C15—N6 1.503 (3)
C4—C5 1.454 (2) C15—H15A 0.9700
C5—C10 1.401 (2) C15—H15B 0.9700
C5—C6 1.407 (2) C16—H16A 0.9600
C6—C7 1.376 (2) C16—H16B 0.9600
C6—N3 1.473 (2) C16—H16C 0.9600
C7—C8 1.367 (3) N1—H1A 0.85 (2)
C7—H7 0.9300 N2—H2A 0.83 (2)
C8—C9 1.378 (2) N3—O4 1.217 (2)
C8—N4 1.456 (2) N3—O5 1.218 (2)
C9—C10 1.373 (2) N4—O6 1.214 (2)
C9—H9 0.9300 N4—O7 1.216 (2)
C10—N5 1.472 (2) N5—O9 1.2177 (19)
C11—C12 1.493 (3) N5—O8 1.2180 (18)
C11—N6 1.507 (3) N6—H6 0.91 (3)
C11—H11A 0.9700 O1W—H1W 0.908 (9)
C11—H11B 0.9700 O1W—H2W 0.907 (9)
C12—H12A 0.9600 O2W—H4W 0.933 (10)
C12—H12B 0.9600 O2W—H3W 0.929 (10)
C12—H12C 0.9600 O10—H10 0.8200
O1—C1—N1 117.90 (15) N6—C13—H13B 108.7
O1—C1—C4 126.17 (15) C14—C13—H13B 108.7
N1—C1—C4 115.93 (14) H13A—C13—H13B 107.6
O2—C2—N1 122.52 (17) O10—C14—C13 112.47 (17)
O2—C2—N2 121.69 (17) O10—C14—H14A 109.1
N1—C2—N2 115.79 (16) C13—C14—H14A 109.1
O3—C3—N2 117.98 (15) O10—C14—H14B 109.1
O3—C3—C4 125.44 (15) C13—C14—H14B 109.1
N2—C3—C4 116.56 (15) H14A—C14—H14B 107.8
C3—C4—C1 120.54 (15) C16—C15—N6 114.6 (2)
C3—C4—C5 119.01 (14) C16—C15—H15A 108.6
C1—C4—C5 120.44 (14) N6—C15—H15A 108.6
C10—C5—C6 112.77 (14) C16—C15—H15B 108.6
C10—C5—C4 123.89 (15) N6—C15—H15B 108.6
C6—C5—C4 123.33 (15) H15A—C15—H15B 107.6
C7—C6—C5 124.70 (16) C15—C16—H16A 109.5
C7—C6—N3 114.12 (15) C15—C16—H16B 109.5
C5—C6—N3 121.13 (15) H16A—C16—H16B 109.5
C8—C7—C6 117.98 (16) C15—C16—H16C 109.5
C8—C7—H7 121.0 H16A—C16—H16C 109.5
C6—C7—H7 121.0 H16B—C16—H16C 109.5
C7—C8—C9 121.78 (16) C2—N1—C1 125.68 (15)
C7—C8—N4 119.59 (16) C2—N1—H1A 117.5 (15)
C9—C8—N4 118.62 (17) C1—N1—H1A 116.8 (15)
C10—C9—C8 117.76 (16) C2—N2—C3 125.47 (16)
C10—C9—H9 121.1 C2—N2—H2A 117.4 (15)
C8—C9—H9 121.1 C3—N2—H2A 117.1 (15)
C9—C10—C5 124.95 (15) O4—N3—O5 124.29 (17)
C9—C10—N5 113.79 (15) O4—N3—C6 117.36 (16)
C5—C10—N5 121.14 (14) O5—N3—C6 118.30 (15)
C12—C11—N6 113.3 (2) O6—N4—O7 123.81 (18)
C12—C11—H11A 108.9 O6—N4—C8 117.96 (19)
N6—C11—H11A 108.9 O7—N4—C8 118.22 (17)
C12—C11—H11B 108.9 O9—N5—O8 124.63 (15)
N6—C11—H11B 108.9 O9—N5—C10 118.02 (14)
H11A—C11—H11B 107.7 O8—N5—C10 117.27 (14)
C11—C12—H12A 109.5 C13—N6—C15 114.97 (17)
C11—C12—H12B 109.5 C13—N6—C11 111.34 (16)
H12A—C12—H12B 109.5 C15—N6—C11 111.13 (17)
C11—C12—H12C 109.5 C13—N6—H6 109.8 (16)
H12A—C12—H12C 109.5 C15—N6—H6 104.4 (16)
H12B—C12—H12C 109.5 C11—N6—H6 104.5 (16)
N6—C13—C14 114.21 (16) H1W—O1W—H2W 113.6 (14)
N6—C13—H13A 108.7 H4W—O2W—H3W 111.6 (16)
C14—C13—H13A 108.7 C14—O10—H10 109.5
O3—C3—C4—C1 176.75 (17) N6—C13—C14—O10 −53.0 (2)
N2—C3—C4—C1 −1.6 (2) O2—C2—N1—C1 178.4 (2)
O3—C3—C4—C5 −2.4 (3) N2—C2—N1—C1 −2.0 (3)
N2—C3—C4—C5 179.24 (16) O1—C1—N1—C2 −178.03 (18)
O1—C1—C4—C3 179.91 (17) C4—C1—N1—C2 1.6 (3)
N1—C1—C4—C3 0.3 (2) O2—C2—N2—C3 −179.9 (2)
O1—C1—C4—C5 −1.0 (3) N1—C2—N2—C3 0.4 (3)
N1—C1—C4—C5 179.45 (15) O3—C3—N2—C2 −177.22 (18)
C3—C4—C5—C10 134.25 (17) C4—C3—N2—C2 1.3 (3)
C1—C4—C5—C10 −44.9 (2) C7—C6—N3—O4 −42.6 (2)
C3—C4—C5—C6 −44.4 (2) C5—C6—N3—O4 139.73 (18)
C1—C4—C5—C6 136.50 (17) C7—C6—N3—O5 135.05 (17)
C10—C5—C6—C7 −1.2 (2) C5—C6—N3—O5 −42.6 (2)
C4—C5—C6—C7 177.56 (16) C7—C8—N4—O6 5.1 (3)
C10—C5—C6—N3 176.24 (15) C9—C8—N4—O6 −176.2 (2)
C4—C5—C6—N3 −5.0 (2) C7—C8—N4—O7 −175.4 (2)
C5—C6—C7—C8 2.2 (3) C9—C8—N4—O7 3.3 (3)
N3—C6—C7—C8 −175.40 (16) C9—C10—N5—O9 133.96 (16)
C6—C7—C8—C9 −0.9 (3) C5—C10—N5—O9 −42.3 (2)
C6—C7—C8—N4 177.78 (16) C9—C10—N5—O8 −42.9 (2)
C7—C8—C9—C10 −1.3 (3) C5—C10—N5—O8 140.79 (16)
N4—C8—C9—C10 −179.93 (16) C14—C13—N6—C15 −56.2 (2)
C8—C9—C10—C5 2.4 (3) C14—C13—N6—C11 176.34 (19)
C8—C9—C10—N5 −173.72 (15) C16—C15—N6—C13 −64.0 (3)
C6—C5—C10—C9 −1.2 (2) C16—C15—N6—C11 63.6 (2)
C4—C5—C10—C9 −179.92 (16) C12—C11—N6—C13 −64.7 (3)
C6—C5—C10—N5 174.67 (14) C12—C11—N6—C15 165.7 (2)
C4—C5—C10—N5 −4.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O10—H10···O2Wi 0.82 2.05 2.792 (2) 150
O10—H10···O4ii 0.82 2.49 3.0648 (19) 129
N6—H6···O1Wiii 0.91 (3) 1.95 (3) 2.846 (2) 170 (2)
N1—H1A···O10iv 0.85 (2) 2.05 (3) 2.884 (2) 166 (2)
N2—H2A···O2v 0.83 (2) 2.03 (2) 2.847 (2) 173 (2)
O1W—H2W···O2v 0.91 (1) 1.90 (2) 2.7431 (19) 154 (2)
O2W—H4W···O1Wvi 0.93 (1) 1.94 (2) 2.796 (3) 152 (3)
O1W—H1W···O3 0.91 (1) 1.91 (1) 2.7783 (17) 160 (2)
O2W—H3W···O1 0.93 (1) 1.89 (2) 2.792 (2) 162 (4)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, −y+1/2, z−1/2; (v) −x+1, −y+1, −z; (vi) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2264).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). APEX2, XPREP and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548. [DOI] [PMC free article] [PubMed]
  7. Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tripathi, K. D. (2009). Essentials of Medical Pharmacology, 6th ed., Chennai, India: Jaypee Brothers.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811017363/su2264sup1.cif

e-67-o1433-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811017363/su2264Isup2.hkl

e-67-o1433-Isup2.hkl (229.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811017363/su2264Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES