Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):o1483. doi: 10.1107/S1600536811018101

2-{(1R,2R)-2-[Bis(4-methyl­benz­yl)amino]­cyclo­hex­yl}isoindoline-1,3-dione

Chao Li a, Xiang-Kai Fu a,*, Chuan-Long Wu a, Jing Huang a
PMCID: PMC3120613  PMID: 21754852

Abstract

In the title mol­ecule, C30H32N2O2, the two tolyl rings form dihedral angles of 65.8 (1) and 6.6 (1)° with the isoindole-1,3-dione mean plane. The cyclo­hexane ring adopts a chair conformation.

Related literature

For applications of chiral tertiary amines as catalysts for direct aldol reactions, see: Paradowska et al. (2009). For details of the synthesis, see: Kaik & Gawroński (2003); Gawronski et al. (1998).graphic file with name e-67-o1483-scheme1.jpg

Experimental

Crystal data

  • C30H32N2O2

  • M r = 452.58

  • Monoclinic, Inline graphic

  • a = 12.472 (2) Å

  • b = 9.2853 (17) Å

  • c = 12.505 (2) Å

  • β = 115.305 (2)°

  • V = 1309.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.38 × 0.24 × 0.24 mm

Data collection

  • Bruker SMART APEX diffractometer

  • 6901 measured reflections

  • 2597 independent reflections

  • 2042 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.112

  • S = 1.11

  • 2597 reflections

  • 309 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018101/cv5079sup1.cif

e-67-o1483-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018101/cv5079Isup2.hkl

e-67-o1483-Isup2.hkl (127.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Southwest University of China for financial support.

supplementary crystallographic information

Comment

Chiral tertiary amines are efficient catalysts for direct aldol reactions of ketones with aldehydes (Paradowska et al., 2009). Therefore, it is of great interest for us to investigate the novel chiral tertiary amine as a chiral catalyst. In this article we would like to report the crystal structure of the title compound (I).

In (I) (Fig. 1), two tolyl rings form dihedral angles of 65.8 (1) and 6.6 (1)°, respectively, with the isoindole-1,3-dione mean plane. Cyclohexane ring adopts a chair conformation. This type of molecular geometry was reported also by Gawronski et al. (1998). It could be found that in the crystal structures the cyclohexane rings adopt chair conformations with phthalimide rings in equatorial orientation.

Experimental

To a solution of (1R,2R)-N-phthaloyl-1,2-diaminocyclohexane (2.44 g, 10 mmol) (Kaik et al., 2003; Gawronski et al., 1998) in acetonitrile (50 ml) was added at room temperature K2CO3 (3.20 g, 23 mmol) and 4-methylbenzyl chloride (3 mL, 25 mmol). The mixture was refluxed with stirring for 5 h. The solvent was removed in vacuo and the mixture was extracted with dichloromethane and NaHCO3 solution. The organic solution was dried over MgSO4 and evaporated. Product was directly purified through flash column chromatography on a slilca gel to afford white solid. A crystal of (I) suitable for X-ray analysis was grown from diethyl ether by slow evaporation at room temperature.

Refinement

All H atoms were placed in idealized positions and treated as riding, with C—H = 0.96 (CH3), Uiso(H) = 1.5 Ueq(CH3), and C—H = 0.97 (CH2), 0.98 or 0.93 Å (CH), Uiso(H) = 1.2 Ueq(CH and CH2). In the absence of any significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1479 sets of Friedel equivalents led to an inconclusive value of -1.1 (17). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering and 20% probability displacement ellipsoids.

Crystal data

C30H32N2O2 F(000) = 484
Mr = 452.58 Dx = 1.148 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1969 reflections
a = 12.472 (2) Å θ = 2.8–21.3°
b = 9.2853 (17) Å µ = 0.07 mm1
c = 12.505 (2) Å T = 298 K
β = 115.305 (2)° Block, colourless
V = 1309.1 (4) Å3 0.38 × 0.24 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 2042 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
graphite θmax = 25.5°, θmin = 1.8°
φ and ω scans h = −13→15
6901 measured reflections k = −9→11
2597 independent reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.0478P] where P = (Fo2 + 2Fc2)/3
2597 reflections (Δ/σ)max = 0.001
309 parameters Δρmax = 0.10 e Å3
1 restraint Δρmin = −0.11 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3760 (3) 0.0454 (4) 0.7604 (3) 0.0615 (8)
H1 0.3811 0.0357 0.8405 0.074*
C2 0.4270 (3) −0.0921 (4) 0.7338 (3) 0.0780 (10)
H2A 0.4295 −0.0825 0.6577 0.094*
H2B 0.5076 −0.1051 0.7934 0.094*
C3 0.3546 (3) −0.2234 (4) 0.7319 (4) 0.0917 (12)
H3A 0.3862 −0.3069 0.7084 0.110*
H3B 0.3606 −0.2408 0.8108 0.110*
C4 0.2260 (3) −0.2031 (4) 0.6470 (4) 0.1012 (13)
H4A 0.1805 −0.2863 0.6503 0.121*
H4B 0.2190 −0.1949 0.5669 0.121*
C5 0.1767 (3) −0.0685 (4) 0.6784 (4) 0.0910 (12)
H5A 0.1791 −0.0802 0.7565 0.109*
H5B 0.0944 −0.0568 0.6225 0.109*
C6 0.2455 (3) 0.0666 (4) 0.6772 (3) 0.0658 (8)
H6 0.2410 0.0744 0.5972 0.079*
C7 0.4942 (2) 0.2658 (4) 0.8556 (2) 0.0581 (7)
C8 0.4647 (3) 0.2219 (4) 0.6645 (3) 0.0641 (8)
C9 0.5322 (3) 0.3581 (4) 0.7045 (2) 0.0646 (8)
C10 0.5750 (3) 0.4513 (5) 0.6459 (3) 0.0876 (11)
H10 0.5641 0.4332 0.5687 0.105*
C11 0.6349 (3) 0.5730 (5) 0.7066 (4) 0.0955 (12)
H11 0.6642 0.6386 0.6695 0.115*
C12 0.6514 (3) 0.5976 (5) 0.8200 (4) 0.0961 (12)
H12 0.6931 0.6790 0.8592 0.115*
C13 0.6079 (3) 0.5051 (4) 0.8780 (3) 0.0806 (10)
H13 0.6180 0.5237 0.9548 0.097*
C14 0.5493 (2) 0.3844 (4) 0.8184 (2) 0.0588 (8)
C15 0.1637 (3) 0.1925 (5) 0.7988 (3) 0.0837 (10)
H15A 0.2246 0.1407 0.8638 0.100*
H15B 0.0903 0.1388 0.7738 0.100*
C16 0.1474 (3) 0.3400 (5) 0.8414 (3) 0.0747 (9)
C17 0.0420 (4) 0.3825 (5) 0.8398 (4) 0.0908 (12)
H17 −0.0231 0.3211 0.8086 0.109*
C18 0.0302 (4) 0.5158 (5) 0.8841 (4) 0.0945 (13)
H18 −0.0424 0.5407 0.8833 0.113*
C19 0.1212 (4) 0.6106 (5) 0.9284 (3) 0.0828 (11)
C20 0.2259 (4) 0.5699 (6) 0.9282 (4) 0.1076 (14)
H20 0.2899 0.6331 0.9568 0.129*
C21 0.2390 (4) 0.4372 (7) 0.8866 (4) 0.1091 (15)
H21 0.3123 0.4124 0.8890 0.131*
C22 0.1084 (4) 0.7562 (6) 0.9758 (4) 0.1147 (15)
H22A 0.0400 0.7556 0.9925 0.172*
H22B 0.0990 0.8290 0.9180 0.172*
H22C 0.1779 0.7763 1.0471 0.172*
C23 0.0991 (3) 0.2557 (5) 0.5925 (3) 0.0788 (10)
H23A 0.0567 0.3291 0.6141 0.095*
H23B 0.0443 0.1777 0.5543 0.095*
C24 0.1419 (3) 0.3184 (4) 0.5070 (3) 0.0675 (9)
C25 0.1056 (3) 0.2635 (5) 0.3942 (3) 0.0793 (10)
H25 0.0565 0.1830 0.3707 0.095*
C26 0.1426 (3) 0.3289 (6) 0.3161 (3) 0.0906 (13)
H26 0.1169 0.2914 0.2402 0.109*
C27 0.2150 (4) 0.4459 (5) 0.3467 (3) 0.0855 (11)
C28 0.2522 (4) 0.4976 (5) 0.4595 (4) 0.0971 (12)
H28 0.3027 0.5767 0.4833 0.117*
C29 0.2161 (4) 0.4344 (4) 0.5382 (3) 0.0859 (11)
H29 0.2429 0.4716 0.6143 0.103*
C30 0.2538 (5) 0.5162 (8) 0.2598 (4) 0.140 (2)
H30A 0.2079 0.4782 0.1820 0.209*
H30B 0.3363 0.4967 0.2828 0.209*
H30C 0.2417 0.6184 0.2593 0.209*
N1 0.4460 (2) 0.1719 (3) 0.76050 (19) 0.0566 (6)
N2 0.1976 (2) 0.2011 (3) 0.6999 (2) 0.0671 (7)
O1 0.49097 (18) 0.2479 (3) 0.95003 (16) 0.0775 (7)
O2 0.4310 (2) 0.1639 (3) 0.56978 (19) 0.0869 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0628 (17) 0.062 (2) 0.0575 (16) −0.0014 (16) 0.0233 (14) 0.0042 (15)
C2 0.0661 (19) 0.065 (2) 0.092 (2) 0.0084 (18) 0.0231 (18) 0.0055 (19)
C3 0.085 (2) 0.061 (2) 0.116 (3) 0.005 (2) 0.031 (2) 0.003 (2)
C4 0.084 (2) 0.066 (3) 0.132 (3) −0.006 (2) 0.026 (2) −0.014 (2)
C5 0.062 (2) 0.076 (3) 0.122 (3) −0.008 (2) 0.026 (2) −0.006 (2)
C6 0.0595 (17) 0.065 (2) 0.0681 (18) 0.0039 (17) 0.0226 (15) −0.0002 (17)
C7 0.0476 (15) 0.072 (2) 0.0478 (15) 0.0018 (15) 0.0139 (12) 0.0009 (15)
C8 0.0733 (19) 0.070 (2) 0.0529 (17) 0.0020 (17) 0.0310 (15) −0.0014 (17)
C9 0.0653 (18) 0.071 (2) 0.0595 (18) −0.0003 (17) 0.0288 (15) 0.0083 (17)
C10 0.104 (3) 0.091 (3) 0.078 (2) −0.009 (3) 0.049 (2) 0.007 (2)
C11 0.104 (3) 0.087 (3) 0.101 (3) −0.024 (3) 0.048 (2) 0.011 (3)
C12 0.091 (3) 0.081 (3) 0.098 (3) −0.020 (2) 0.023 (2) 0.000 (2)
C13 0.081 (2) 0.086 (3) 0.067 (2) −0.015 (2) 0.0242 (18) −0.008 (2)
C14 0.0514 (16) 0.065 (2) 0.0538 (16) −0.0007 (15) 0.0161 (13) −0.0004 (15)
C15 0.093 (2) 0.080 (3) 0.093 (2) 0.007 (2) 0.053 (2) 0.010 (2)
C16 0.081 (2) 0.084 (3) 0.0734 (19) 0.006 (2) 0.0466 (18) 0.009 (2)
C17 0.095 (3) 0.080 (3) 0.120 (3) −0.003 (2) 0.067 (2) 0.010 (3)
C18 0.097 (3) 0.093 (3) 0.118 (3) 0.016 (3) 0.071 (3) 0.014 (3)
C19 0.098 (3) 0.094 (3) 0.063 (2) 0.005 (2) 0.039 (2) 0.004 (2)
C20 0.092 (3) 0.125 (4) 0.104 (3) −0.015 (3) 0.041 (2) −0.038 (3)
C21 0.079 (2) 0.140 (4) 0.115 (3) 0.003 (3) 0.048 (2) −0.037 (3)
C22 0.150 (4) 0.103 (4) 0.087 (3) 0.015 (3) 0.048 (3) −0.009 (3)
C23 0.0663 (19) 0.084 (3) 0.079 (2) 0.016 (2) 0.0249 (17) 0.001 (2)
C24 0.0640 (18) 0.064 (2) 0.0644 (19) 0.0193 (17) 0.0176 (15) 0.0024 (17)
C25 0.0636 (19) 0.085 (3) 0.078 (2) 0.0056 (19) 0.0194 (17) −0.015 (2)
C26 0.080 (2) 0.119 (4) 0.062 (2) 0.018 (3) 0.0195 (19) −0.012 (2)
C27 0.090 (3) 0.089 (3) 0.074 (2) 0.022 (3) 0.031 (2) 0.016 (2)
C28 0.119 (3) 0.066 (2) 0.091 (3) −0.001 (2) 0.031 (2) 0.009 (2)
C29 0.120 (3) 0.063 (2) 0.064 (2) 0.003 (2) 0.029 (2) 0.0004 (19)
C30 0.149 (4) 0.164 (6) 0.126 (4) 0.026 (4) 0.078 (3) 0.040 (4)
N1 0.0595 (13) 0.0603 (16) 0.0502 (12) −0.0025 (13) 0.0236 (11) 0.0015 (12)
N2 0.0656 (15) 0.0680 (19) 0.0686 (15) 0.0087 (14) 0.0296 (13) 0.0038 (14)
O1 0.0797 (13) 0.1028 (19) 0.0471 (11) −0.0103 (14) 0.0243 (10) 0.0023 (12)
O2 0.1193 (18) 0.0876 (17) 0.0625 (13) −0.0082 (16) 0.0472 (13) −0.0137 (13)

Geometric parameters (Å, °)

C1—N1 1.463 (4) C15—C16 1.514 (6)
C1—C6 1.524 (4) C15—H15A 0.9700
C1—C2 1.525 (4) C15—H15B 0.9700
C1—H1 0.9800 C16—C17 1.365 (5)
C2—C3 1.511 (5) C16—C21 1.374 (6)
C2—H2A 0.9700 C17—C18 1.390 (6)
C2—H2B 0.9700 C17—H17 0.9300
C3—C4 1.510 (5) C18—C19 1.354 (6)
C3—H3A 0.9700 C18—H18 0.9300
C3—H3B 0.9700 C19—C20 1.360 (6)
C4—C5 1.517 (6) C19—C22 1.512 (6)
C4—H4A 0.9700 C20—C21 1.374 (7)
C4—H4B 0.9700 C20—H20 0.9300
C5—C6 1.524 (5) C21—H21 0.9300
C5—H5A 0.9700 C22—H22A 0.9600
C5—H5B 0.9700 C22—H22B 0.9600
C6—N2 1.464 (4) C22—H22C 0.9600
C6—H6 0.9800 C23—N2 1.470 (4)
C7—O1 1.211 (3) C23—C24 1.501 (5)
C7—N1 1.387 (4) C23—H23A 0.9700
C7—C14 1.474 (4) C23—H23B 0.9700
C8—O2 1.201 (4) C24—C29 1.364 (5)
C8—N1 1.398 (4) C24—C25 1.382 (4)
C8—C9 1.483 (5) C25—C26 1.385 (5)
C9—C14 1.369 (4) C25—H25 0.9300
C9—C10 1.380 (5) C26—C27 1.359 (6)
C10—C11 1.388 (6) C26—H26 0.9300
C10—H10 0.9300 C27—C28 1.369 (5)
C11—C12 1.361 (6) C27—C30 1.513 (6)
C11—H11 0.9300 C28—C29 1.376 (5)
C12—C13 1.376 (5) C28—H28 0.9300
C12—H12 0.9300 C29—H29 0.9300
C13—C14 1.371 (5) C30—H30A 0.9600
C13—H13 0.9300 C30—H30B 0.9600
C15—N2 1.470 (4) C30—H30C 0.9600
N1—C1—C6 111.1 (3) N2—C15—H15B 109.2
N1—C1—C2 111.6 (2) C16—C15—H15B 109.2
C6—C1—C2 112.5 (3) H15A—C15—H15B 107.9
N1—C1—H1 107.1 C17—C16—C21 116.2 (4)
C6—C1—H1 107.1 C17—C16—C15 122.0 (4)
C2—C1—H1 107.1 C21—C16—C15 121.8 (3)
C3—C2—C1 112.1 (3) C16—C17—C18 121.2 (4)
C3—C2—H2A 109.2 C16—C17—H17 119.4
C1—C2—H2A 109.2 C18—C17—H17 119.4
C3—C2—H2B 109.2 C19—C18—C17 121.9 (4)
C1—C2—H2B 109.2 C19—C18—H18 119.0
H2A—C2—H2B 107.9 C17—C18—H18 119.0
C4—C3—C2 111.0 (3) C18—C19—C20 117.2 (4)
C4—C3—H3A 109.4 C18—C19—C22 122.0 (4)
C2—C3—H3A 109.4 C20—C19—C22 120.8 (4)
C4—C3—H3B 109.4 C19—C20—C21 121.3 (4)
C2—C3—H3B 109.4 C19—C20—H20 119.3
H3A—C3—H3B 108.0 C21—C20—H20 119.3
C3—C4—C5 110.3 (3) C20—C21—C16 122.2 (4)
C3—C4—H4A 109.6 C20—C21—H21 118.9
C5—C4—H4A 109.6 C16—C21—H21 118.9
C3—C4—H4B 109.6 C19—C22—H22A 109.5
C5—C4—H4B 109.6 C19—C22—H22B 109.5
H4A—C4—H4B 108.1 H22A—C22—H22B 109.5
C4—C5—C6 112.5 (3) C19—C22—H22C 109.5
C4—C5—H5A 109.1 H22A—C22—H22C 109.5
C6—C5—H5A 109.1 H22B—C22—H22C 109.5
C4—C5—H5B 109.1 N2—C23—C24 111.9 (2)
C6—C5—H5B 109.1 N2—C23—H23A 109.2
H5A—C5—H5B 107.8 C24—C23—H23A 109.2
N2—C6—C5 114.9 (2) N2—C23—H23B 109.2
N2—C6—C1 112.5 (3) C24—C23—H23B 109.2
C5—C6—C1 109.2 (3) H23A—C23—H23B 107.9
N2—C6—H6 106.6 C29—C24—C25 118.0 (3)
C5—C6—H6 106.6 C29—C24—C23 120.4 (3)
C1—C6—H6 106.6 C25—C24—C23 121.5 (3)
O1—C7—N1 124.5 (3) C24—C25—C26 119.7 (4)
O1—C7—C14 128.7 (3) C24—C25—H25 120.2
N1—C7—C14 106.8 (2) C26—C25—H25 120.2
O2—C8—N1 125.6 (3) C27—C26—C25 122.2 (3)
O2—C8—C9 128.6 (3) C27—C26—H26 118.9
N1—C8—C9 105.8 (2) C25—C26—H26 118.9
C14—C9—C10 121.1 (3) C26—C27—C28 117.5 (4)
C14—C9—C8 108.5 (3) C26—C27—C30 121.4 (4)
C10—C9—C8 130.4 (3) C28—C27—C30 121.1 (5)
C9—C10—C11 117.3 (3) C27—C28—C29 121.1 (4)
C9—C10—H10 121.3 C27—C28—H28 119.4
C11—C10—H10 121.3 C29—C28—H28 119.4
C12—C11—C10 120.8 (4) C24—C29—C28 121.4 (4)
C12—C11—H11 119.6 C24—C29—H29 119.3
C10—C11—H11 119.6 C28—C29—H29 119.3
C11—C12—C13 121.7 (4) C27—C30—H30A 109.5
C11—C12—H12 119.1 C27—C30—H30B 109.5
C13—C12—H12 119.1 H30A—C30—H30B 109.5
C14—C13—C12 117.5 (3) C27—C30—H30C 109.5
C14—C13—H13 121.2 H30A—C30—H30C 109.5
C12—C13—H13 121.2 H30B—C30—H30C 109.5
C9—C14—C13 121.4 (3) C7—N1—C8 110.9 (3)
C9—C14—C7 108.0 (3) C7—N1—C1 123.1 (2)
C13—C14—C7 130.7 (3) C8—N1—C1 125.8 (3)
N2—C15—C16 112.1 (3) C6—N2—C23 111.6 (3)
N2—C15—H15A 109.2 C6—N2—C15 113.9 (3)
C16—C15—H15A 109.2 C23—N2—C15 111.1 (2)
N1—C1—C2—C3 −179.3 (3) C18—C19—C20—C21 −1.0 (7)
C6—C1—C2—C3 −53.7 (4) C22—C19—C20—C21 179.3 (4)
C1—C2—C3—C4 54.5 (5) C19—C20—C21—C16 1.1 (8)
C2—C3—C4—C5 −56.2 (5) C17—C16—C21—C20 0.1 (7)
C3—C4—C5—C6 58.2 (5) C15—C16—C21—C20 −178.3 (4)
C4—C5—C6—N2 176.5 (3) N2—C23—C24—C29 −61.9 (4)
C4—C5—C6—C1 −56.0 (4) N2—C23—C24—C25 119.8 (3)
N1—C1—C6—N2 −52.1 (3) C29—C24—C25—C26 −1.6 (5)
C2—C1—C6—N2 −178.0 (3) C23—C24—C25—C26 176.9 (3)
N1—C1—C6—C5 179.1 (3) C24—C25—C26—C27 0.6 (5)
C2—C1—C6—C5 53.2 (4) C25—C26—C27—C28 0.6 (6)
O2—C8—C9—C14 178.8 (3) C25—C26—C27—C30 −179.6 (4)
N1—C8—C9—C14 −0.7 (3) C26—C27—C28—C29 −0.8 (6)
O2—C8—C9—C10 −1.2 (6) C30—C27—C28—C29 179.4 (4)
N1—C8—C9—C10 179.3 (3) C25—C24—C29—C28 1.4 (5)
C14—C9—C10—C11 −0.6 (5) C23—C24—C29—C28 −177.1 (3)
C8—C9—C10—C11 179.4 (3) C27—C28—C29—C24 −0.2 (6)
C9—C10—C11—C12 0.7 (6) O1—C7—N1—C8 −179.6 (3)
C10—C11—C12—C13 −1.2 (7) C14—C7—N1—C8 −0.6 (3)
C11—C12—C13—C14 1.5 (6) O1—C7—N1—C1 5.5 (4)
C10—C9—C14—C13 1.0 (5) C14—C7—N1—C1 −175.5 (2)
C8—C9—C14—C13 −179.0 (3) O2—C8—N1—C7 −178.7 (3)
C10—C9—C14—C7 −179.6 (3) C9—C8—N1—C7 0.8 (3)
C8—C9—C14—C7 0.4 (3) O2—C8—N1—C1 −4.0 (5)
C12—C13—C14—C9 −1.4 (5) C9—C8—N1—C1 175.5 (3)
C12—C13—C14—C7 179.4 (3) C6—C1—N1—C7 108.9 (3)
O1—C7—C14—C9 179.1 (3) C2—C1—N1—C7 −124.7 (3)
N1—C7—C14—C9 0.1 (3) C6—C1—N1—C8 −65.2 (4)
O1—C7—C14—C13 −1.6 (5) C2—C1—N1—C8 61.2 (4)
N1—C7—C14—C13 179.5 (3) C5—C6—N2—C23 −82.1 (4)
N2—C15—C16—C17 120.1 (3) C1—C6—N2—C23 152.1 (3)
N2—C15—C16—C21 −61.6 (5) C5—C6—N2—C15 44.6 (4)
C21—C16—C17—C18 −1.3 (6) C1—C6—N2—C15 −81.2 (3)
C15—C16—C17—C18 177.1 (3) C24—C23—N2—C6 −73.6 (4)
C16—C17—C18—C19 1.3 (6) C24—C23—N2—C15 158.1 (3)
C17—C18—C19—C20 −0.1 (6) C16—C15—N2—C6 164.1 (3)
C17—C18—C19—C22 179.5 (4) C16—C15—N2—C23 −68.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5079).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gawronski, J., Kazmierczak, F., Gawronska, K., Rychlewska, U., Nordén, B. & Holmén, A. (1998). J. Am. Chem. Soc. 120, 12083–12091.
  3. Kaik, M. & Gawroński, J. (2003). Tetrahedron Asymmetry, 14, 1559–1563.
  4. Paradowska, J., Rogozinóska, M. & Mlynarski, J. (2009). Tetrahedron Lett. 50, 1639–1641.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811018101/cv5079sup1.cif

e-67-o1483-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018101/cv5079Isup2.hkl

e-67-o1483-Isup2.hkl (127.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES