Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1334. doi: 10.1107/S160053681101419X

4,6-Dichloro-5-(2-meth­oxy­phen­oxy)-2,2′-bipyrimidine

Tian-tian Ren a, Zhong Zhang a, Cong-cong Zhong a, Zhong-zhi Yang a, Zhan-wang Shi a,*
PMCID: PMC3120620  PMID: 21754730

Abstract

In the title compound, C15H10Cl2N4O2, the dichloro­pyrimidine and meth­oxy­phen­oxy parts are approximately perpendicular [dihedral angle = 89.9 (9)°]. The dihedral angle between the two pyrimidine rings is 36.3 (4)° In the crystal, there are no hydrogen bonds but the mol­ecules are held together by short inter­molecular C⋯N [3.206 (3) Å] contacts and C—H⋯π inter­actions.

Related literature

For the use of 2,2′-bipyrimidine as a ligand in inorganic and organometallic chemistry, see: Fabrice et al. (2008); Hunziker & Ludi (1977). It was first synthesized by Bly and Mellon (1962) utilizing the Ullmann coupling of 2-bromo­pyrimidine in the presence of metallic copper.graphic file with name e-67-o1334-scheme1.jpg

Experimental

Crystal data

  • C15H10Cl2N4O2

  • M r = 349.17

  • Monoclinic, Inline graphic

  • a = 10.716 (2) Å

  • b = 8.1112 (18) Å

  • c = 18.601 (5) Å

  • β = 106.486 (3)°

  • V = 1550.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.911, T max = 0.926

  • 8106 measured reflections

  • 2733 independent reflections

  • 2319 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.114

  • S = 1.08

  • 2733 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101419X/fl2331sup1.cif

e-67-o1334-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101419X/fl2331Isup2.hkl

e-67-o1334-Isup2.hkl (134.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. C—H⋯π interactions (Å, °).

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cgi 0.93 2.87 3.760 (3) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge financial support provided by the National Natural Science Foundation of China (20761002), the Natural Science Foundation of Guangxi (No. 0832080) and the Innovation Project of Guangxi University for Nationlities (No. gxun-chx2010080).

supplementary crystallographic information

Comment

2,2'-Bipyrimidine has been used as a ligand in inorganic and organometallic chemistry (Hunziker & Ludi, 1977; Fabrice et al., 2008) and exhibits remarkable stability in acidic medium. It was first synthesized by Bly and Mellon (1962) utilizing the Ullmann coupling of 2-bromopyrimidine in the presence of metallic copper. As part of our studies on the synthesis and characterization of these compounds, we report here the crystal structure of (I).

In (I) the dichloropyrimidine and the methoxyphenoxy are approximately perpendicular (dihedral angle of 89.90 (91) °). The dihedral angle between the two pyrimidine rings is 36.25 (38)° (Fig. 1).

The molecules are linked by intermolecular C—H···N , C—H···C and C···N short contacts. C12—H12···N4, C12···N4=3.639 (3), H12···N4=2.728 (3), and C12—H12···N4=166.49; C8···N2=3.206 (3); C1—H1···C12, C1···C12=3.725 (3), H1···C12=2.814 (3), and C1—H1···C12=166.14; C10—H10···C13, C10···C13=3.694 (3)), H10···C13=2.886 (3), and C13—H10···C10=146.05.

Experimental

A solution of 4,6-Dichloro-5-(2-methoxyphenoxy)-2,2'-bipyrimidine (10 mmol) in 50ml toluene was refluxed for 1h with stirring then filtered, washed several times with ethanol and dried in vacuo, to produce a powder of the title compound. The powder was added to 50ml toluene with stirring until completely dissolved. Finally, colourless crystals suitable for data collection were obtained by slow evaporation of the toluene at room temperature. Elemental analysis calculate: Elemental analysis: found: C, 51.60; H, 2.89; N, 16.05; calc. for C15H10Cl2N4O2: C,51.53; H, 2.93; N, 16.11.

Refinement

Data collection-2102 independent reflections but 2101 in Refinement. H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.96Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Crystal packing of (I) showing the short contacts interactions as dashed lines.

Crystal data

C15H10Cl2N4O2 F(000) = 712
Mr = 349.17 Dx = 1.496 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.716 (2) Å Cell parameters from 3720 reflections
b = 8.1112 (18) Å θ = 2.6–27.4°
c = 18.601 (5) Å µ = 0.43 mm1
β = 106.486 (3)° T = 296 K
V = 1550.3 (6) Å3 Block, colourless
Z = 4 0.22 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2733 independent reflections
Radiation source: fine-focus sealed tube 2319 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.911, Tmax = 0.926 k = −9→9
8106 measured reflections l = −22→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.7172P] where P = (Fo2 + 2Fc2)/3
2733 reflections (Δ/σ)max = 0.001
209 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.35488 (7) 0.23438 (8) 0.95225 (4) 0.0698 (2)
Cl1 −0.12322 (6) 0.00465 (9) 0.81525 (4) 0.0697 (2)
O1 0.09431 (17) 0.24803 (18) 0.84012 (8) 0.0514 (4)
N1 0.04052 (18) −0.1321 (2) 0.93028 (10) 0.0461 (4)
O2 −0.01418 (17) 0.4733 (2) 0.74474 (9) 0.0564 (4)
N3 0.25212 (18) −0.0303 (2) 0.99122 (9) 0.0434 (4)
N2 0.07696 (19) −0.3406 (2) 1.05310 (10) 0.0509 (5)
C4 0.1789 (2) −0.2855 (3) 1.03313 (11) 0.0394 (5)
C5 0.1558 (2) −0.1388 (3) 0.98205 (11) 0.0399 (5)
N4 0.29885 (19) −0.3461 (2) 1.05286 (11) 0.0504 (5)
C9 0.1043 (2) 0.2281 (3) 0.76750 (11) 0.0401 (5)
C8 0.1164 (2) 0.1136 (3) 0.88636 (11) 0.0437 (5)
C13 0.0568 (2) 0.3436 (3) 0.64467 (12) 0.0480 (5)
H13 0.0179 0.4242 0.6099 0.058*
C14 0.0468 (2) 0.3523 (3) 0.71727 (11) 0.0403 (5)
C12 0.1243 (2) 0.2156 (3) 0.62364 (12) 0.0512 (6)
H12 0.1311 0.2112 0.5749 0.061*
C6 0.2308 (2) 0.0942 (3) 0.94339 (11) 0.0446 (5)
C2 0.2172 (3) −0.5496 (3) 1.11929 (13) 0.0580 (6)
H2 0.2305 −0.6438 1.1490 0.070*
C15 −0.0513 (3) 0.6175 (3) 0.69994 (17) 0.0712 (8)
H15A −0.1114 0.5880 0.6528 0.107*
H15B 0.0245 0.6674 0.6914 0.107*
H15C −0.0920 0.6943 0.7255 0.107*
C10 0.1703 (2) 0.1008 (3) 0.74643 (12) 0.0501 (6)
H10 0.2076 0.0185 0.7806 0.060*
C11 0.1813 (2) 0.0952 (3) 0.67400 (13) 0.0537 (6)
H11 0.2272 0.0100 0.6596 0.064*
C3 0.0986 (3) −0.4745 (3) 1.09680 (13) 0.0564 (6)
H3 0.0303 −0.5180 1.1124 0.068*
C7 0.0238 (2) −0.0064 (3) 0.88345 (12) 0.0457 (5)
C1 0.3157 (3) −0.4805 (3) 1.09624 (14) 0.0589 (7)
H1 0.3978 −0.5289 1.1113 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0869 (5) 0.0571 (4) 0.0554 (4) −0.0231 (3) 0.0039 (3) 0.0114 (3)
Cl1 0.0610 (4) 0.0732 (5) 0.0600 (4) 0.0094 (3) −0.0073 (3) 0.0149 (3)
O1 0.0831 (11) 0.0397 (9) 0.0335 (8) 0.0168 (8) 0.0197 (8) 0.0094 (6)
N1 0.0521 (11) 0.0438 (10) 0.0403 (10) 0.0047 (8) 0.0095 (8) 0.0056 (8)
O2 0.0784 (11) 0.0468 (9) 0.0461 (9) 0.0198 (8) 0.0209 (8) 0.0144 (7)
N3 0.0577 (11) 0.0390 (10) 0.0316 (9) 0.0020 (8) 0.0094 (8) 0.0035 (7)
N2 0.0617 (12) 0.0495 (11) 0.0446 (10) 0.0045 (9) 0.0203 (9) 0.0101 (9)
C4 0.0534 (12) 0.0357 (11) 0.0291 (10) 0.0028 (9) 0.0115 (9) −0.0003 (8)
C5 0.0518 (12) 0.0379 (11) 0.0307 (10) 0.0062 (9) 0.0127 (9) 0.0015 (8)
N4 0.0558 (11) 0.0447 (11) 0.0490 (11) 0.0080 (9) 0.0121 (9) 0.0089 (9)
C9 0.0471 (11) 0.0431 (12) 0.0286 (10) −0.0003 (9) 0.0084 (8) 0.0024 (8)
C8 0.0639 (14) 0.0369 (11) 0.0313 (10) 0.0119 (10) 0.0151 (10) 0.0058 (9)
C13 0.0564 (13) 0.0493 (13) 0.0362 (11) −0.0062 (10) 0.0095 (10) 0.0082 (10)
C14 0.0436 (11) 0.0402 (12) 0.0357 (11) −0.0011 (9) 0.0087 (9) 0.0036 (9)
C12 0.0572 (14) 0.0628 (15) 0.0355 (12) −0.0119 (11) 0.0164 (10) −0.0054 (11)
C6 0.0624 (13) 0.0374 (11) 0.0334 (10) −0.0003 (10) 0.0124 (10) 0.0003 (9)
C2 0.0844 (18) 0.0406 (13) 0.0435 (13) 0.0036 (12) 0.0093 (12) 0.0116 (10)
C15 0.0818 (19) 0.0533 (16) 0.0810 (19) 0.0250 (14) 0.0273 (15) 0.0276 (14)
C10 0.0566 (13) 0.0499 (14) 0.0410 (12) 0.0122 (11) 0.0090 (10) 0.0039 (10)
C11 0.0554 (13) 0.0608 (15) 0.0465 (13) 0.0065 (12) 0.0171 (11) −0.0070 (11)
C3 0.0767 (17) 0.0511 (14) 0.0449 (13) −0.0041 (12) 0.0228 (12) 0.0099 (11)
C7 0.0530 (13) 0.0463 (13) 0.0350 (11) 0.0105 (10) 0.0079 (9) 0.0040 (9)
C1 0.0678 (16) 0.0462 (14) 0.0581 (15) 0.0152 (12) 0.0103 (13) 0.0121 (11)

Geometric parameters (Å, °)

Cl2—C6 1.722 (2) C8—C6 1.384 (3)
Cl1—C7 1.722 (2) C13—C12 1.384 (3)
O1—C8 1.367 (2) C13—C14 1.386 (3)
O1—C9 1.394 (2) C13—H13 0.9300
N1—C7 1.320 (3) C12—C11 1.371 (3)
N1—C5 1.335 (3) C12—H12 0.9300
O2—C14 1.358 (3) C2—C3 1.364 (4)
O2—C15 1.426 (3) C2—C1 1.368 (4)
N3—C6 1.322 (3) C2—H2 0.9300
N3—C5 1.330 (3) C15—H15A 0.9600
N2—C4 1.327 (3) C15—H15B 0.9600
N2—C3 1.337 (3) C15—H15C 0.9600
C4—N4 1.328 (3) C10—C11 1.386 (3)
C4—C5 1.498 (3) C10—H10 0.9300
N4—C1 1.338 (3) C11—H11 0.9300
C9—C10 1.370 (3) C3—H3 0.9300
C9—C14 1.393 (3) C1—H1 0.9300
C8—C7 1.380 (3)
C8—O1—C9 118.03 (16) N3—C6—C8 123.3 (2)
C7—N1—C5 115.60 (19) N3—C6—Cl2 117.29 (17)
C14—O2—C15 117.23 (18) C8—C6—Cl2 119.36 (17)
C6—N3—C5 116.07 (19) C3—C2—C1 117.1 (2)
C4—N2—C3 115.4 (2) C3—C2—H2 121.4
N2—C4—N4 127.39 (19) C1—C2—H2 121.4
N2—C4—C5 116.39 (19) O2—C15—H15A 109.5
N4—C4—C5 116.22 (19) O2—C15—H15B 109.5
N3—C5—N1 126.23 (19) H15A—C15—H15B 109.5
N3—C5—C4 117.52 (18) O2—C15—H15C 109.5
N1—C5—C4 116.23 (19) H15A—C15—H15C 109.5
C4—N4—C1 115.1 (2) H15B—C15—H15C 109.5
C10—C9—C14 121.26 (19) C9—C10—C11 119.7 (2)
C10—C9—O1 123.52 (18) C9—C10—H10 120.1
C14—C9—O1 115.15 (18) C11—C10—H10 120.1
O1—C8—C7 122.9 (2) C12—C11—C10 119.8 (2)
O1—C8—C6 122.0 (2) C12—C11—H11 120.1
C7—C8—C6 114.86 (19) C10—C11—H11 120.1
C12—C13—C14 120.3 (2) N2—C3—C2 122.3 (2)
C12—C13—H13 119.9 N2—C3—H3 118.8
C14—C13—H13 119.9 C2—C3—H3 118.8
O2—C14—C13 125.57 (19) N1—C7—C8 123.9 (2)
O2—C14—C9 116.05 (18) N1—C7—Cl1 116.80 (18)
C13—C14—C9 118.4 (2) C8—C7—Cl1 119.30 (16)
C11—C12—C13 120.6 (2) N4—C1—C2 122.6 (2)
C11—C12—H12 119.7 N4—C1—H1 118.7
C13—C12—H12 119.7 C2—C1—H1 118.7

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 ring.
D—H···A D—H H···A D···A D—H···A
C1—H1···Cgi 0.93 2.87 3.760 (3) 161

Symmetry codes: (i) x+1/2, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2331).

References

  1. Bly, D. D. & Mellon, M. G. (1962). J. Org. Chem. 27, 2945–2946.
  2. Fabrice, P., Patr, H., Kamal, B. & Cyri, T. (2008). Inorg Chim Acta, 361, 373–379.
  3. Hunziker, M. & Ludi, A. (1977). J. Am. Chem. Soc. 99, 7370–7371.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101419X/fl2331sup1.cif

e-67-o1334-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101419X/fl2331Isup2.hkl

e-67-o1334-Isup2.hkl (134.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES