Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):o1295. doi: 10.1107/S160053681101556X

1-[6-(6-Acetyl­pyridin-2-yl)pyridin-2-yl]ethanone

Huseyin Zekeriya Dogan a, Abdurrahman Sengul a,*, Simon John Coles b
PMCID: PMC3120622  PMID: 21754701

Abstract

In the title compound, C14H12N2O2, the asymmetric unit comprises one half-mol­ecule with an inversion center between the pyridine rings. The rings are trans coplanar with the acetyl groups deviating slightly from the mean planes, making a dihedral angle of 4.63 (4)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, forming a supra­molecular sheet parallel to (100).

Related literature

The compound is of inter­est with respect to supra­molecular chemistry as a precursor for polypyridyl bridging ligands. For related structures, see: Parks et al. (1973); Potts et al. (1993); Zong et al. (2006); Şengül et al. (1998); Agac et al. (2010); Iyoda et al. (1990); Janiak et al. (1999); O’Donnell & Steel (2010); Kochel (2005). For applications of related structures, see: Parks et al. (1973); Iyoda et al. (1990); Şengül et al. (2009); Agac et al. (2010).graphic file with name e-67-o1295-scheme1.jpg

Experimental

Crystal data

  • C14H12N2O2

  • M r = 240.26

  • Monoclinic, Inline graphic

  • a = 3.9338 (2) Å

  • b = 13.8005 (8) Å

  • c = 10.8728 (6) Å

  • β = 94.437 (4)°

  • V = 588.50 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.50 × 0.20 × 0.20 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer with APEXII area detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.955, T max = 0.982

  • 10564 measured reflections

  • 1336 independent reflections

  • 1220 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.105

  • S = 1.10

  • 1336 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101556X/bq2286sup1.cif

e-67-o1295-sup1.cif (11.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101556X/bq2286Isup2.hkl

e-67-o1295-Isup2.hkl (64.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101556X/bq2286Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.56 3.2992 (16) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the research project fund of Zonguldak Karaelmas University (grant No. 2010–13–02–04) and the UK Engineering and Physical Sciences Research Council.

supplementary crystallographic information

Comment

The principles of supramolecular chemistry provide guidelines for the construction of quite complex molecules or constructs from relatively simple components. In this respect, 6,6'-diacetyl-2,2'-bipyridine, acting as a diketone has been widely used as a precursor or building block for the construction of polypyridine bridging ligands [Şengül et al., 2009; Agac et al., 2010; Potts et al., 1993; Zong et al., 2006]. The well established coordination ability of 2,2'-bipyridine suggests that ligands containing multiple pyridine rings joined through their 2,6-positions would be ideal for the self-assembly of mono-, double-, or triple-stranded helicates containing one or more transition-metal cations and producing a variety of coordination geometries and architectures. This area is therefore of interest with respect to supramolecular chemistry as a precursor for polypyridyl bridging ligands (Janiak et al., 1999; Potts et al., 1993; Zong et al., 2006) and derivatives are important materials for the preparation of oximes or other funcionalities (Iyoda et al., 1990; Parks et al., 1973; Agac et al., 2010).

As a continuation of work on the structures of such compounds (Şengül et al., 1998) the title compound derived from the coupling of 6-bromo-2-acetylpyridine is reported herein. The molecule of the title compound (Fig. 1.) possesses a twofold symmetry where each of the pyridyl rings are trans to each other, forming an essentially planar structure. The bond lengths have normal values (Şengül et al., 1998), and are comparable to those observed in similar compounds (Janiak et al., 1999; O'Donnell & Steel, 2010; Kochel, 2005; Şengül et al. 2009).

In the crystal, molecules are linked through intermolecular C-H···O H-bonds (Table 1) to form a supramolecular network parallel to (100) (Fig. 1).

Experimental

The title compound was synthesized by the reported method of homocoupling of aryl halides using Ni(II) complex and zinc in the presence of triphenylphosphine by Janiak et al. (1999). The spectroscopic and analytical data are in good agreement with the reported values in literature by Zong et al., 2006; Potts et al., 1993; Agac et al., 2010 and Parks et al., 1973. The solid was crystallized from dichloromethane to afford colourless needless suitable for X-ray diffraction. Mp.: 178.5–179.5 °C. 1H-NMR (dmso-d6, δp.p.m.): 8.81(d, 2H, J3,4 = 8 Hz, H3,3'), 8.23(d, 2H, J5,4 = 7 Hz, H5,5'), 8.07(dd, 2H, J4,3 = 8.2 Hz, J4,5 = 1 Hz, H4,4'), 2.79(s, 6H, 2xCH3). Calc. for C14H12N2O2: C, 69,99; H, 5,03; N, 11,66 Found: C,62,54; H, 4,54; N, 11,68%. IR (ATR, ν cm-1): 3056 (CHar), 2990 (CHal), 1590 (C=O), 1487 and 1437 (C=N and C=C), 1311, 1182, 1120, 1094, 1071, 995, 861, 748, 720. UV-Vis (MeCN, λmax/nm): 286, 258, 219.

Refinement

Hydrogen atoms were fixed in idealized positions [0.98 Å (CH3) & 0.95 Å (CH)] and refined using the riding model with Uĩso (H) set to 1.5 and 1.2Ueq(carrier) respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x, -y, -z

Fig. 2.

Fig. 2.

Intermolecular C=O···H contacts forming a supramolecular sheet along the a axis

Crystal data

C14H12N2O2 F(000) = 252
Mr = 240.26 Dx = 1.356 Mg m3
Monoclinic, P21/c Melting point: 452 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 3.9338 (2) Å Cell parameters from 10564 reflections
b = 13.8005 (8) Å θ = 2.9–27.5°
c = 10.8728 (6) Å µ = 0.09 mm1
β = 94.437 (4)° T = 120 K
V = 588.50 (6) Å3 Rod, colourless
Z = 2 0.50 × 0.20 × 0.20 mm

Data collection

Bruker–Nonius Kappa CCD diffractometer with APEXII area detector 1336 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 1220 reflections with I > 2σ(I)
10cm confocal mirrors Rint = 0.034
φ and ω scans θmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −5→4
Tmin = 0.955, Tmax = 0.982 k = −17→17
10564 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.237P] where P = (Fo2 + 2Fc2)/3
1336 reflections (Δ/σ)max = 0.001
83 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.19 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4161 (3) 0.54168 (8) 0.46613 (10) 0.0185 (3)
C2 0.4431 (3) 0.63598 (9) 0.51269 (11) 0.0234 (3)
H2 0.5670 0.6485 0.5895 0.028*
C3 0.2863 (3) 0.71096 (9) 0.44508 (12) 0.0277 (3)
H3 0.3018 0.7757 0.4748 0.033*
C4 0.1063 (3) 0.69010 (9) 0.33338 (12) 0.0248 (3)
H4 −0.0011 0.7402 0.2846 0.030*
C5 0.0871 (3) 0.59397 (8) 0.29474 (10) 0.0197 (3)
C6 −0.1175 (3) 0.56675 (9) 0.17703 (11) 0.0216 (3)
C7 −0.1483 (3) 0.46102 (9) 0.14615 (11) 0.0247 (3)
H7A −0.2969 0.4528 0.0703 0.037*
H7B −0.2460 0.4266 0.2139 0.037*
H7C 0.0780 0.4346 0.1341 0.037*
N1 0.2396 (2) 0.52066 (7) 0.35884 (9) 0.0190 (2)
O1 −0.2556 (3) 0.62953 (7) 0.11205 (8) 0.0315 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0184 (5) 0.0192 (6) 0.0174 (5) −0.0012 (4) −0.0011 (4) 0.0013 (4)
C2 0.0270 (6) 0.0206 (6) 0.0215 (6) −0.0012 (5) −0.0047 (5) −0.0012 (4)
C3 0.0333 (7) 0.0185 (6) 0.0297 (7) 0.0004 (5) −0.0073 (5) −0.0017 (5)
C4 0.0275 (6) 0.0199 (6) 0.0259 (6) 0.0018 (5) −0.0053 (5) 0.0032 (5)
C5 0.0199 (6) 0.0200 (6) 0.0189 (5) 0.0005 (4) −0.0012 (4) 0.0018 (4)
C6 0.0210 (6) 0.0234 (6) 0.0199 (6) 0.0019 (4) −0.0019 (4) 0.0016 (4)
C7 0.0258 (6) 0.0245 (6) 0.0225 (6) 0.0006 (5) −0.0063 (5) −0.0017 (5)
N1 0.0191 (5) 0.0197 (5) 0.0178 (5) 0.0000 (4) −0.0014 (4) 0.0016 (4)
O1 0.0384 (6) 0.0282 (5) 0.0259 (5) 0.0068 (4) −0.0104 (4) 0.0033 (4)

Geometric parameters (Å, °)

C1—N1 1.3423 (15) C4—H4 0.9500
C1—C2 1.3975 (16) C5—N1 1.3433 (14)
C1—C1i 1.492 (2) C5—C6 1.5058 (16)
C2—C3 1.3861 (17) C6—O1 1.2189 (15)
C2—H2 0.9500 C6—C7 1.5000 (17)
C3—C4 1.3878 (17) C7—H7A 0.9800
C3—H3 0.9500 C7—H7B 0.9800
C4—C5 1.3919 (17) C7—H7C 0.9800
N1—C1—C2 122.39 (11) N1—C5—C6 116.16 (10)
N1—C1—C1i 116.22 (12) C4—C5—C6 120.48 (10)
C2—C1—C1i 121.39 (13) O1—C6—C7 122.48 (11)
C3—C2—C1 119.01 (11) O1—C6—C5 120.02 (11)
C3—C2—H2 120.5 C7—C6—C5 117.49 (10)
C1—C2—H2 120.5 C6—C7—H7A 109.5
C2—C3—C4 119.03 (11) C6—C7—H7B 109.5
C2—C3—H3 120.5 H7A—C7—H7B 109.5
C4—C3—H3 120.5 C6—C7—H7C 109.5
C3—C4—C5 118.28 (11) H7A—C7—H7C 109.5
C3—C4—H4 120.9 H7B—C7—H7C 109.5
C5—C4—H4 120.9 C1—N1—C5 117.92 (10)
N1—C5—C4 123.35 (11)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1ii 0.95 2.56 3.2992 (16) 135.

Symmetry codes: (ii) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2286).

References

  1. Agac, C., Yilmaz, I., Sengul, A. & Coles, S. J. (2010). Turk. J. Chem. 34, 781–791.
  2. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  3. Iyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn, 63, 80–87.
  4. Janiak, C., Deblon, S., Wu, H.-P., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. 1999, 1507–1521.
  5. Kochel, A. (2005). Acta Cryst. E61, o926–o927.
  6. O’Donnell, M. A. & Steel, P. J. (2010). Acta Cryst. E66, m1630. [DOI] [PMC free article] [PubMed]
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Parks, J. E., Wagner, B. E. & Holm, R. H. (1973). J. Organomet. Chem. 56, 53–66.
  9. Potts, K. T., Raiford, K. A. G. & Keshavarz-K, M. (1993). J. Am. Chem. Soc. 115, 2793–2807.
  10. Sengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661–662.
  11. Şengül, A., Wang, W.-J. & Coles, S. J. (2009). Polyhedron, 28, 69–76.
  12. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167–175. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101556X/bq2286sup1.cif

e-67-o1295-sup1.cif (11.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101556X/bq2286Isup2.hkl

e-67-o1295-Isup2.hkl (64.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101556X/bq2286Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES