Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 7;67(Pt 6):m688–m689. doi: 10.1107/S1600536811015650

Bis(μ-2-tert-butyl­phenyl­imido-1:2κ2 N:N)chlorido-2κCl-(diethyl ether-1κO)(2η5-penta­methyl­cyclo­penta­dien­yl)lithiumtantalum(V)

Jacqueline M Cole a,*,, Michael C W Chan b, Vernon C Gibson c, Judith A K Howard d
PMCID: PMC3120624  PMID: 21754594

Abstract

In the title compound, [LiTa(C10H15)(C10H13N)2Cl(C4H10O)], the TaV atom is coordinated by a η5-penta­methyl­cyclo­penta­dienyl (Cp*) ligand, a chloride ion and two N-bonded 2-tert-butyl­phenyl­imide dianions. With respect to the two N atoms, the chloride ion and the centroid of the Cp* ring, the tantalum coordination geometry is approximately tetra­hedral. The lithium cation is bonded to both the 2-tert-butyl­phenyl­imide dianions and also a diethyl ether mol­ecule, in an approximate trigonal planar arrangement. The Ta⋯Li separation is 2.681 (15) Å. In the crystal, a weak C—H⋯Cl inter­action links the mol­ecules. When compared to the 2,6-diisopropyl­phenyl­imide analogue (‘the Wigley derivative’) of the title compound, the two structures are conformationally matched with an overall r.m.s. difference of 0.461Å.

Related literature

For related work demonstrating the stabilization of unusual imido metal species via 2,6-diisopropyl­phenyl substitution, see: Cockcroft et al. (1992); Glueck et al. (1991); Anhaus et al. (1990); Gibson & Poole (1995); Baldwin et al. (1993). For conformational analysis of structures, see: Weng et al. (2008). For van der Waals contact distances, see: Bondi (1964). For crystal mounting techniques, see: Kottke & Stalke (1993).graphic file with name e-67-0m688-scheme1.jpg

Experimental

Crystal data

  • [LiTa(C10H15)(C10H13N)2Cl(C4H10O)]

  • M r = 727.11

  • Orthorhombic, Inline graphic

  • a = 19.5365 (12) Å

  • b = 16.3544 (10) Å

  • c = 21.3272 (13) Å

  • V = 6814.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 150 K

  • 0.60 × 0.34 × 0.16 mm

Data collection

  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1995) T min = 0.346, T max = 0.666

  • 24495 measured reflections

  • 4848 independent reflections

  • 4792 reflections with I > 2σ(I)

  • R int = 0.060

  • θmax = 23.3°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.105

  • S = 1.23

  • 4848 reflections

  • 337 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.95 e Å−3

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL93.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015650/hb5832sup1.cif

e-67-0m688-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015650/hb5832Isup2.hkl

e-67-0m688-Isup2.hkl (237.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ta1—N1 1.842 (6)
Ta1—N2 1.854 (6)
Ta1—Cl1 2.3985 (19)
Li1—N1 2.048 (16)
Li1—N2 2.062 (16)
Li1—O1 1.910 (19)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Cl1i 0.95 2.89 3.593 (8) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

All authors would like to thank the University of Durham for provision of all experimentation carried out in this study. JMC expresses her thanks to the Institut Laue Langevin, Grenoble, France, and the EPSRC, for financial support; the Royal Society for a University Research Fellowship and the University of New Brunswick for the UNB Vice-Chancellor’s Research Chair. MCWC wishes to thank the Research Grants Council of the Hong Kong SAR, China (CityU 100307) for financial support.

supplementary crystallographic information

Comment

The bulky 2,6-diisopropylphenyl substituent has been investigated widely in transition metal imido chemistry, and has been shown to stabilize a variety of unusual imido metal species (Cockcroft et al., 1992; Glueck et al., 1991; Anhaus et al., 1990; Gibson & Poole, 1995). The presence of two bulky ortho isopropyl substituents undoubtedly plays an important role in this stabilization. Imido aryl substituents containing one bulky substituent in the ortho position also offer the possibility for substantial steric protection, not only due to the presence of the large substituent but also as a result of bending at the imido nitrogen. We have thus studied the bis (2 - t-butylphenylimido) chloro (η5-pentamethylcyclopentadienyl) tantalum(V) anion (I) with a view to comparing its structure with its previously reported 2,6-diisopropylphenylimido analogue (II) (Baldwin et al., 1993).

The 50% probability thermal ellipsoid plot of the molecular structure of (I) is given in Figure 1. Selected bond distances and angles are given in Table 1. Fractional coordinates and anisotropic displacement parameters are provided in supplementary material.

The overall bond geometry of the title compound is generally similar to its 2,6-diisopropylphenylimido analogue. In particular, the Ta(1)—N(1) and Ta(1)—N(2) distances and Ta(1)—N(1)—C(11) and Ta(1)—N(2)—C(21) angles are comparable [1.844 (6) Å, 1.848 (6) Å, 165.9 (5)° and 161.7 (5)° repectively].

However, several geometrical differences exist between the two compounds as a result of the presence of a more bulky aryl imido substituent in this case.

In the 2,6-diisopropylphenylimido structure, the planes of the arylimido and Cp* rings are approximately parallel to each other to minimize steric repulsion between the respective isopropyl and methyl groups. The situation for the 2 - t-butylphenylimido congener is comparable, except that the single bulky tert-butyl substituent on each imido ligand is now positioned in a less congested orientation away from the [µ-Li(OEt2)]+ moiety, such that they point in a similar direction to the Ta—Cl vector.

This steric alleviation is shown in Figure 2, which also illustrates the overall conformational difference between the two structures. This structure overlay was generated by matching the following respective atom pairs in each molecule: Ta, N, Li, O, Cp* and phenyl C atoms (Weng et al., 2008). These atoms are conformationally matched with an overall root-mean-square difference of 0.461 Å. The geometric differences between the tert-butyl and disopropyl phenyl substituents are emphasized by the visual offset to this conformationally matched molecular fragment. A full list of individual atomic pairwise deviations from a perfect match is given in supplementary information.

The Ta(1)—Li(1) distance of 2.68 (1)Å is slightly longer than in the Wigley derivative, being the only other reported. We presume that this is also consequent upon the greater steric repulsion from the tertiary butyl groups compared to the isopropyl groups of the phenylimido ligands.

The atoms in the OEt2 fragment of the subject compound display large isotropic displacement parameters. Given the terminal nature of this fragment, significant thermal motion is likely the cause, although positional disorder cannot be excluded. In contrast, the analogous displacement parameters in the Wigley derivative appear regular, being comparable in size to other terminal carbon atoms in the main part of the structure.

The structure of (I) contains a weak C12—H12A···Cl1 interaction [H···Cl = 2.89 (2) Å, symmetry code: 3/2 - x, 1/2 + y, z; c.f. sum of van der Waals radii of H and Cl = 2.95 Å (Bondi, 1964)]. This links adjacent molecules forming chains which are almost parallel to the y-axis (see Figure 3). Adjacent chains are arranged anti-parallel to each other thus completing the three-dimensional structure. In contrast, no hydrogen-bonds or short non-bonded contacts are present in the diisopropylphenyl structure, as deduced from a search in Materials Mercury (Macrae et al., 2008).

Experimental

A solution of LiNH(2-tBuC6H4) (1.717 g, 11.07 mmol) in Et2O (80 ml) was added dropwise to a stirred solution of Cp*TaCl4 (1.267 g, 2.77 mmol) in Et2O (80 ml) at 0 °C. This mixture was allowed to warm up to room temperature and stirred for 24 h. The resultant yellow/brown solution was filtered from the white residue of LiCl, concentrated and cooled to -30 °C to yield long yellow crystals of (I) (yield: 1.47 g, 73%).

Elemental analysis for C34H51N2OClLiTa (727.14) found (required): %C = 56.17 (56.16), %H = 7.10 (7.07), %N = 3.82 (3.85).

Mass Spectrometry data (EI, m/z, 35Cl): 646 [M - LiOEt2]+.

1H NMR data (400 MHz, C6D6, 298 K): 0.57 (broad t, OCH2CH3), 1.62 (s, 18H, CMe3), 2.08 (s, 15H, C5Me5), 2.69 (broad q, OCH2CH3), 6.64 (d, 2H, J = 7.6 Hz, H3), 6.70, 7.05 (two t, 4H, J = 7.4 Hz, H4 and H5), 7.32 (d, 2H, J = 7.8 Hz, H6).

13C NMR data (100 MHz, C6D6, 298 K): 11.2 (q, J = 127 Hz, C5Me5), 14.4 (q, J = 127 Hz, OCH2CH3), 29.6 (q, J = 125 Hz, CMe3), 35.7 (s, CMe3), 64.6 (t, J = 143 Hz, OCH2CH3), 116.7 (s, C5Me5), 118.9, 125.3, 126.3, 126.9 (doublets, J = 154–159 Hz, C3–6), 140.5 (s, C2), 158.9 (s, C1).

Refinement

A yellow rectangular crystal was mounted onto a Siemens SMART-CCD diffractometer using the oil-drop method (Kottke & Stalke, 1993).

Positional and anisotropic displacement parameters for all non-hydrogen atoms in the anionic part of the molecule were refined. Likewise, the lithium atom within the cation was refined anisotropically. The displacement parameters of the oxydiethyl group were refined isotropically. All hydrogen isotropic displacement parameters in the molecule were constrained to the riding model, Uiso(H) = 1.2Ueq(C) except for those relating to terminal methyl group H atoms, where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement parameters are displayed at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

Best fit overlay of molecules (I) and (II).

Fig. 3.

Fig. 3.

Hydrogen-bonding linking chains of molecules in (I) along the crystallographic y-axis.

Crystal data

[LiTa(C10H15)(C10H13N)2Cl(C4H10O)] F(000) = 2960
Mr = 727.11 Dx = 1.417 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 498 reflections
a = 19.5365 (12) Å θ = 4.0–21.1°
b = 16.3544 (10) Å µ = 3.33 mm1
c = 21.3272 (13) Å T = 150 K
V = 6814.2 (7) Å3 Rectangular block, yellow
Z = 8 0.60 × 0.34 × 0.16 mm

Data collection

Siemens SMART CCD diffractometer 4848 independent reflections
Radiation source: fine-focus sealed tube 4792 reflections with I > 2σ(I)
graphite Rint = 0.060
ω scans θmax = 23.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Siemens, 1995) h = −20→21
Tmin = 0.346, Tmax = 0.666 k = −17→18
24495 measured reflections l = −23→21

Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0141P)2 + 61.7377P] where P = (Fo2 + 2Fc2)/3
4848 reflections (Δ/σ)max = 0.001
337 parameters Δρmax = 1.29 e Å3
1 restraint Δρmin = −0.95 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ta1 0.770702 (15) 0.594882 (18) −0.131442 (14) 0.02547 (13)
Cl1 0.76902 (10) 0.45343 (11) −0.10178 (10) 0.0383 (5)
C1 0.8795 (4) 0.5664 (5) −0.1864 (4) 0.0326 (18)
C2 0.8751 (4) 0.6522 (5) −0.1761 (4) 0.035 (2)
C3 0.8178 (4) 0.6815 (4) −0.2118 (4) 0.0323 (19)
C4 0.7888 (4) 0.6145 (5) −0.2446 (3) 0.0315 (18)
C5 0.8262 (4) 0.5434 (5) −0.2284 (3) 0.0294 (18)
C6 0.9339 (4) 0.5112 (5) −0.1595 (4) 0.043 (2)
H6A 0.9639 0.5429 −0.1318 0.052*
H6B 0.9610 0.4876 −0.1937 0.052*
H6C 0.9122 0.4671 −0.1355 0.052*
C7 0.9227 (5) 0.7023 (6) −0.1368 (4) 0.046 (2)
H7A 0.9574 0.6667 −0.1180 0.055*
H7B 0.8968 0.7297 −0.1035 0.055*
H7C 0.9452 0.7435 −0.1631 0.055*
C8 0.7991 (5) 0.7695 (5) −0.2201 (4) 0.045 (2)
H8A 0.8268 0.8032 −0.1919 0.054*
H8B 0.7505 0.7771 −0.2102 0.054*
H8C 0.8076 0.7859 −0.2636 0.054*
C9 0.7304 (4) 0.6190 (5) −0.2893 (4) 0.043 (2)
H9A 0.7203 0.5642 −0.3053 0.051*
H9B 0.7426 0.6550 −0.3243 0.051*
H9C 0.6901 0.6408 −0.2677 0.051*
C10 0.8139 (5) 0.4592 (5) −0.2540 (4) 0.040 (2)
H10A 0.7740 0.4602 −0.2819 0.048*
H10B 0.8054 0.4212 −0.2194 0.048*
H10C 0.8542 0.4412 −0.2776 0.048*
N1 0.7902 (3) 0.6469 (4) −0.0570 (3) 0.0278 (14)
C11 0.8143 (4) 0.6997 (4) −0.0099 (4) 0.0283 (17)
C12 0.8098 (4) 0.7845 (5) −0.0219 (4) 0.0342 (19)
H12A 0.7937 0.8021 −0.0617 0.041*
C13 0.8277 (5) 0.8422 (5) 0.0214 (4) 0.045 (2)
H13A 0.8236 0.8988 0.0121 0.054*
C14 0.8519 (5) 0.8165 (5) 0.0790 (4) 0.048 (2)
H14A 0.8637 0.8556 0.1101 0.057*
C15 0.8590 (5) 0.7337 (5) 0.0915 (4) 0.044 (2)
H15A 0.8765 0.7175 0.1311 0.053*
C16 0.8415 (4) 0.6732 (5) 0.0483 (3) 0.0285 (17)
C17 0.8502 (4) 0.5813 (5) 0.0649 (4) 0.0356 (19)
C18 0.7817 (5) 0.5367 (5) 0.0635 (4) 0.048 (2)
H18A 0.7887 0.4789 0.0739 0.058*
H18B 0.7617 0.5410 0.0215 0.058*
H18C 0.7506 0.5614 0.0942 0.058*
C19 0.9004 (5) 0.5425 (6) 0.0171 (5) 0.051 (2)
H19A 0.9064 0.4844 0.0269 0.061*
H19B 0.9447 0.5704 0.0196 0.061*
H19C 0.8818 0.5482 −0.0253 0.061*
C20 0.8814 (5) 0.5694 (6) 0.1295 (4) 0.053 (3)
H20A 0.8863 0.5109 0.1381 0.064*
H20B 0.8516 0.5943 0.1612 0.064*
H20C 0.9266 0.5955 0.1310 0.064*
N2 0.6791 (3) 0.6225 (4) −0.1398 (3) 0.0286 (14)
C21 0.6174 (4) 0.6516 (5) −0.1624 (3) 0.0291 (17)
C22 0.6147 (4) 0.7345 (5) −0.1801 (4) 0.039 (2)
H22A 0.6547 0.7670 −0.1757 0.047*
C23 0.5558 (5) 0.7708 (5) −0.2039 (4) 0.044 (2)
H23A 0.5560 0.8267 −0.2161 0.052*
C24 0.4974 (5) 0.7246 (6) −0.2094 (4) 0.042 (2)
H24A 0.4567 0.7481 −0.2259 0.051*
C25 0.4985 (4) 0.6440 (5) −0.1908 (4) 0.037 (2)
H25A 0.4575 0.6131 −0.1947 0.044*
C26 0.5559 (4) 0.6054 (5) −0.1667 (3) 0.0301 (18)
C27 0.5531 (4) 0.5142 (5) −0.1470 (4) 0.037 (2)
C28 0.4805 (5) 0.4798 (6) −0.1530 (5) 0.055 (3)
H28A 0.4497 0.5102 −0.1252 0.066*
H28B 0.4805 0.4219 −0.1411 0.066*
H28C 0.4649 0.4853 −0.1965 0.066*
C29 0.5753 (5) 0.5038 (5) −0.0792 (4) 0.046 (2)
H29A 0.6217 0.5256 −0.0739 0.055*
H29B 0.5748 0.4456 −0.0682 0.055*
H29C 0.5437 0.5336 −0.0517 0.055*
C30 0.5987 (5) 0.4636 (5) −0.1916 (5) 0.049 (2)
H30A 0.6460 0.4836 −0.1892 0.059*
H30B 0.5819 0.4693 −0.2347 0.059*
H30C 0.5973 0.4059 −0.1792 0.059*
Li1 0.6892 (8) 0.6800 (10) −0.0542 (7) 0.049 (4)
O1 0.6296 (6) 0.7269 (7) 0.0070 (6) 0.124 (4)*
C50 0.6498 (19) 0.759 (2) 0.0679 (18) 0.256 (15)*
H50A 0.6991 0.7731 0.0673 0.308*
H50B 0.6237 0.8095 0.0770 0.308*
C51 0.6380 (13) 0.7041 (15) 0.1120 (12) 0.183 (10)*
H51A 0.6590 0.7220 0.1514 0.274*
H51B 0.6576 0.6515 0.0994 0.274*
H51C 0.5885 0.6980 0.1180 0.274*
C61 0.5323 (12) 0.7245 (14) −0.0022 (11) 0.179 (9)*
H61A 0.4853 0.7428 −0.0098 0.269*
H61B 0.5371 0.7075 0.0417 0.269*
H61C 0.5428 0.6782 −0.0297 0.269*
C60 0.5824 (19) 0.795 (2) −0.016 (2) 0.33 (2)*
H60A 0.5873 0.8105 −0.0605 0.398*
H60B 0.5785 0.8432 0.0122 0.398*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ta1 0.02539 (19) 0.02426 (18) 0.02676 (19) −0.00208 (13) −0.00071 (13) 0.00144 (13)
Cl1 0.0452 (12) 0.0255 (10) 0.0441 (11) 0.0005 (9) 0.0013 (10) 0.0065 (9)
C1 0.027 (4) 0.040 (5) 0.031 (4) −0.003 (4) 0.004 (4) −0.005 (4)
C2 0.036 (5) 0.041 (5) 0.029 (4) −0.014 (4) 0.012 (4) −0.004 (4)
C3 0.041 (5) 0.022 (4) 0.034 (4) −0.009 (4) 0.011 (4) 0.002 (3)
C4 0.037 (5) 0.036 (4) 0.022 (4) −0.006 (4) 0.003 (3) 0.002 (3)
C5 0.028 (4) 0.034 (4) 0.026 (4) −0.004 (3) 0.005 (3) −0.005 (3)
C6 0.030 (5) 0.050 (5) 0.050 (5) 0.005 (4) 0.006 (4) −0.005 (4)
C7 0.037 (5) 0.052 (6) 0.048 (5) −0.015 (4) 0.014 (4) −0.012 (4)
C8 0.059 (6) 0.030 (4) 0.046 (5) −0.009 (4) 0.016 (5) 0.005 (4)
C9 0.049 (6) 0.041 (5) 0.038 (5) 0.000 (4) −0.007 (4) −0.002 (4)
C10 0.040 (5) 0.036 (4) 0.045 (5) 0.003 (4) 0.003 (4) −0.009 (4)
N1 0.026 (3) 0.025 (3) 0.032 (4) 0.000 (3) 0.005 (3) 0.005 (3)
C11 0.029 (4) 0.023 (4) 0.033 (4) 0.001 (3) 0.003 (4) 0.001 (3)
C12 0.045 (5) 0.030 (4) 0.027 (4) 0.000 (4) −0.001 (4) 0.001 (3)
C13 0.059 (6) 0.033 (5) 0.042 (5) −0.004 (4) −0.006 (5) −0.003 (4)
C14 0.053 (6) 0.042 (5) 0.047 (6) −0.005 (4) −0.001 (5) −0.017 (4)
C15 0.047 (5) 0.047 (5) 0.039 (5) 0.004 (4) −0.011 (4) −0.001 (4)
C16 0.024 (4) 0.038 (4) 0.024 (4) 0.001 (3) −0.004 (3) 0.001 (3)
C17 0.042 (5) 0.037 (5) 0.027 (4) 0.012 (4) −0.010 (4) 0.002 (4)
C18 0.066 (6) 0.041 (5) 0.038 (5) −0.005 (5) −0.007 (5) 0.011 (4)
C19 0.049 (6) 0.042 (5) 0.062 (6) 0.015 (5) −0.008 (5) 0.005 (5)
C20 0.062 (6) 0.055 (6) 0.042 (5) 0.013 (5) −0.016 (5) 0.006 (4)
N2 0.029 (4) 0.020 (3) 0.037 (4) 0.000 (3) −0.005 (3) 0.005 (3)
C21 0.024 (4) 0.037 (4) 0.027 (4) 0.001 (3) −0.002 (3) −0.001 (3)
C22 0.034 (5) 0.032 (5) 0.052 (5) −0.003 (4) −0.006 (4) −0.001 (4)
C23 0.051 (6) 0.034 (5) 0.047 (5) 0.011 (4) −0.003 (4) 0.004 (4)
C24 0.035 (5) 0.054 (6) 0.039 (5) 0.012 (4) −0.010 (4) −0.002 (4)
C25 0.026 (4) 0.047 (5) 0.037 (5) −0.001 (4) −0.001 (4) −0.009 (4)
C26 0.028 (4) 0.037 (5) 0.025 (4) 0.000 (4) 0.004 (3) −0.004 (3)
C27 0.032 (5) 0.034 (5) 0.045 (5) −0.009 (4) 0.001 (4) 0.005 (4)
C28 0.040 (5) 0.046 (6) 0.079 (7) −0.011 (4) 0.000 (5) 0.004 (5)
C29 0.045 (5) 0.042 (5) 0.051 (6) −0.004 (4) 0.010 (5) 0.008 (4)
C30 0.045 (6) 0.038 (5) 0.063 (6) −0.001 (4) 0.000 (5) −0.007 (4)
Li1 0.035 (8) 0.069 (10) 0.045 (9) 0.012 (7) 0.000 (7) −0.011 (8)

Geometric parameters (Å, °)

Ta1—N1 1.842 (6) C17—C18 1.526 (12)
Ta1—N2 1.854 (6) C17—C19 1.549 (12)
Ta1—Cl1 2.3985 (19) C18—H18A 0.9800
Ta1—C3 2.405 (7) C18—H18B 0.9800
Ta1—C2 2.438 (8) C18—H18C 0.9800
Ta1—C4 2.460 (7) C19—H19A 0.9800
Ta1—C1 2.472 (8) C19—H19B 0.9800
Ta1—C5 2.481 (7) C19—H19C 0.9800
Ta1—Li1 2.681 (15) C20—H20A 0.9800
C1—C2 1.422 (11) C20—H20B 0.9800
C1—C5 1.423 (11) C20—H20C 0.9800
C1—C6 1.507 (11) N2—C21 1.383 (10)
C2—C3 1.435 (12) C21—C22 1.409 (11)
C2—C7 1.499 (11) C21—C26 1.422 (10)
C3—C4 1.417 (11) C21—Li1 2.740 (17)
C3—C8 1.496 (11) C22—C23 1.389 (12)
C4—C5 1.416 (11) C22—H22A 0.9500
C4—C9 1.488 (11) C23—C24 1.374 (12)
C5—C10 1.502 (11) C23—H23A 0.9500
C6—H6A 0.9800 C24—C25 1.378 (12)
C6—H6B 0.9800 C24—H24A 0.9500
C6—H6C 0.9800 C25—C26 1.386 (11)
C7—H7A 0.9800 C25—H25A 0.9500
C7—H7B 0.9800 C26—C27 1.551 (11)
C7—H7C 0.9800 C27—C29 1.521 (12)
C8—H8A 0.9800 C27—C28 1.531 (12)
C8—H8B 0.9800 C27—C30 1.543 (12)
C8—H8C 0.9800 C28—H28A 0.9800
C9—H9A 0.9800 C28—H28B 0.9800
C9—H9B 0.9800 C28—H28C 0.9800
C9—H9C 0.9800 C29—H29A 0.9800
C10—H10A 0.9800 C29—H29B 0.9800
C10—H10B 0.9800 C29—H29C 0.9800
C10—H10C 0.9800 C30—H30A 0.9800
N1—C11 1.405 (10) C30—H30B 0.9800
Li1—N1 2.048 (16) C30—H30C 0.9800
Li1—N2 2.062 (16) O1—C50 1.46 (3)
Li1—O1 1.910 (19) O1—C60 1.527 (18)
C11—C12 1.412 (10) C50—C51 1.32 (3)
C11—C16 1.418 (10) C50—H50A 0.9900
C11—Li1 2.641 (17) C50—H50B 0.9900
C12—C13 1.366 (11) C51—H51A 0.9800
C12—H12A 0.9500 C51—H51B 0.9800
C13—C14 1.382 (13) C51—H51C 0.9800
C13—H13A 0.9500 C61—C60 1.54 (4)
C14—C15 1.387 (12) C61—H61A 0.9800
C14—H14A 0.9500 C61—H61B 0.9800
C15—C16 1.394 (11) C61—H61C 0.9800
C15—H15A 0.9500 C60—H60A 0.9900
C16—C17 1.554 (11) C60—H60B 0.9900
C17—C20 1.521 (11)
N1—Ta1—N2 99.8 (3) C15—C16—C11 117.0 (7)
N1—Ta1—Cl1 102.76 (19) C15—C16—C17 120.6 (7)
N2—Ta1—Cl1 104.27 (18) C11—C16—C17 122.4 (7)
N1—Ta1—C3 105.3 (3) C20—C17—C18 108.0 (7)
N2—Ta1—C3 99.1 (3) C20—C17—C19 106.9 (7)
Cl1—Ta1—C3 139.54 (19) C18—C17—C19 110.3 (7)
N1—Ta1—C2 89.2 (3) C20—C17—C16 112.0 (7)
N2—Ta1—C2 132.6 (3) C18—C17—C16 111.2 (7)
Cl1—Ta1—C2 119.0 (2) C19—C17—C16 108.4 (7)
C3—Ta1—C2 34.5 (3) C17—C18—H18A 109.5
N1—Ta1—C4 139.1 (3) C17—C18—H18B 109.5
N2—Ta1—C4 90.8 (3) H18A—C18—H18B 109.5
Cl1—Ta1—C4 112.73 (18) C17—C18—H18C 109.5
C3—Ta1—C4 33.9 (3) H18A—C18—H18C 109.5
C2—Ta1—C4 56.4 (3) H18B—C18—H18C 109.5
N1—Ta1—C1 108.5 (3) C17—C19—H19A 109.5
N2—Ta1—C1 146.2 (3) C17—C19—H19B 109.5
Cl1—Ta1—C1 87.41 (19) H19A—C19—H19B 109.5
C3—Ta1—C1 56.3 (3) C17—C19—H19C 109.5
C2—Ta1—C1 33.7 (3) H19A—C19—H19C 109.5
C4—Ta1—C1 55.7 (3) H19B—C19—H19C 109.5
N1—Ta1—C5 141.7 (3) C17—C20—H20A 109.5
N2—Ta1—C5 115.1 (3) C17—C20—H20B 109.5
Cl1—Ta1—C5 84.18 (19) H20A—C20—H20B 109.5
C3—Ta1—C5 55.9 (3) C17—C20—H20C 109.5
C2—Ta1—C5 55.9 (3) H20A—C20—H20C 109.5
C4—Ta1—C5 33.3 (3) H20B—C20—H20C 109.5
C1—Ta1—C5 33.4 (2) C21—N2—Ta1 163.4 (5)
N1—Ta1—Li1 49.7 (4) C21—N2—Li1 103.6 (6)
N2—Ta1—Li1 50.1 (4) Ta1—N2—Li1 86.2 (5)
Cl1—Ta1—Li1 109.3 (4) N2—C21—C22 117.3 (7)
C3—Ta1—Li1 111.0 (4) N2—C21—C26 125.1 (7)
C2—Ta1—Li1 122.5 (4) C22—C21—C26 117.5 (7)
C4—Ta1—Li1 128.3 (4) N2—C21—Li1 47.0 (5)
C1—Ta1—Li1 154.2 (4) C22—C21—Li1 94.7 (6)
C5—Ta1—Li1 161.4 (4) C26—C21—Li1 125.2 (6)
C2—C1—C5 108.1 (7) C23—C22—C21 122.7 (8)
C2—C1—C6 125.2 (7) C23—C22—H22A 118.7
C5—C1—C6 126.6 (7) C21—C22—H22A 118.7
C2—C1—Ta1 71.9 (4) C24—C23—C22 119.0 (8)
C5—C1—Ta1 73.7 (4) C24—C23—H23A 120.5
C6—C1—Ta1 122.6 (5) C22—C23—H23A 120.5
C1—C2—C3 107.2 (7) C23—C24—C25 119.2 (8)
C1—C2—C7 126.0 (8) C23—C24—H24A 120.4
C3—C2—C7 126.8 (8) C25—C24—H24A 120.4
C1—C2—Ta1 74.5 (4) C24—C25—C26 123.7 (8)
C3—C2—Ta1 71.5 (4) C24—C25—H25A 118.1
C7—C2—Ta1 120.7 (5) C26—C25—H25A 118.1
C4—C3—C2 108.4 (7) C25—C26—C21 117.8 (7)
C4—C3—C8 126.0 (8) C25—C26—C27 120.6 (7)
C2—C3—C8 125.1 (7) C21—C26—C27 121.6 (7)
C4—C3—Ta1 75.2 (4) C29—C27—C28 107.6 (7)
C2—C3—Ta1 74.0 (4) C29—C27—C30 111.2 (7)
C8—C3—Ta1 123.9 (6) C28—C27—C30 106.7 (7)
C5—C4—C3 107.9 (7) C29—C27—C26 110.8 (7)
C5—C4—C9 126.4 (7) C28—C27—C26 111.3 (7)
C3—C4—C9 125.7 (7) C30—C27—C26 109.2 (7)
C5—C4—Ta1 74.2 (4) C27—C28—H28A 109.5
C3—C4—Ta1 71.0 (4) C27—C28—H28B 109.5
C9—C4—Ta1 121.7 (5) H28A—C28—H28B 109.5
C4—C5—C1 108.4 (7) C27—C28—H28C 109.5
C4—C5—C10 125.5 (7) H28A—C28—H28C 109.5
C1—C5—C10 126.1 (7) H28B—C28—H28C 109.5
C4—C5—Ta1 72.5 (4) C27—C29—H29A 109.5
C1—C5—Ta1 72.9 (4) C27—C29—H29B 109.5
C10—C5—Ta1 123.0 (5) H29A—C29—H29B 109.5
C1—C6—H6A 109.5 C27—C29—H29C 109.5
C1—C6—H6B 109.5 H29A—C29—H29C 109.5
H6A—C6—H6B 109.5 H29B—C29—H29C 109.5
C1—C6—H6C 109.5 C27—C30—H30A 109.5
H6A—C6—H6C 109.5 C27—C30—H30B 109.5
H6B—C6—H6C 109.5 H30A—C30—H30B 109.5
C2—C7—H7A 109.5 C27—C30—H30C 109.5
C2—C7—H7B 109.5 H30A—C30—H30C 109.5
H7A—C7—H7B 109.5 H30B—C30—H30C 109.5
C2—C7—H7C 109.5 O1—Li1—N1 135.5 (9)
H7A—C7—H7C 109.5 O1—Li1—N2 136.9 (9)
H7B—C7—H7C 109.5 N1—Li1—N2 86.9 (6)
C3—C8—H8A 109.5 O1—Li1—C11 105.7 (8)
C3—C8—H8B 109.5 N1—Li1—C11 31.8 (3)
H8A—C8—H8B 109.5 N2—Li1—C11 117.4 (7)
C3—C8—H8C 109.5 O1—Li1—Ta1 172.1 (10)
H8A—C8—H8C 109.5 N1—Li1—Ta1 43.3 (3)
H8B—C8—H8C 109.5 N2—Li1—Ta1 43.6 (3)
C4—C9—H9A 109.5 C11—Li1—Ta1 74.5 (4)
C4—C9—H9B 109.5 O1—Li1—C21 109.4 (7)
H9A—C9—H9B 109.5 N1—Li1—C21 115.1 (7)
C4—C9—H9C 109.5 N2—Li1—C21 29.4 (3)
H9A—C9—H9C 109.5 C11—Li1—C21 142.7 (6)
H9B—C9—H9C 109.5 Ta1—Li1—C21 72.5 (4)
C5—C10—H10A 109.5 C50—O1—C60 101 (2)
C5—C10—H10B 109.5 C50—O1—Li1 126.2 (18)
H10A—C10—H10B 109.5 C60—O1—Li1 116.3 (19)
C5—C10—H10C 109.5 C51—C50—O1 110 (3)
H10A—C10—H10C 109.5 C51—C50—H50A 109.7
H10B—C10—H10C 109.5 O1—C50—H50A 109.7
C11—N1—Ta1 165.7 (5) C51—C50—H50B 109.7
C11—N1—Li1 98.1 (6) O1—C50—H50B 109.7
Ta1—N1—Li1 87.0 (5) H50A—C50—H50B 108.2
N1—C11—C12 116.9 (7) C50—C51—H51A 109.5
N1—C11—C16 124.3 (6) C50—C51—H51B 109.5
C12—C11—C16 118.8 (7) H51A—C51—H51B 109.5
N1—C11—Li1 50.1 (5) C50—C51—H51C 109.5
C12—C11—Li1 89.8 (6) H51A—C51—H51C 109.5
C16—C11—Li1 128.5 (6) H51B—C51—H51C 109.5
C13—C12—C11 122.6 (8) C60—C61—H61A 109.5
C13—C12—H12A 118.7 C60—C61—H61B 109.5
C11—C12—H12A 118.7 H61A—C61—H61B 109.5
C12—C13—C14 118.6 (8) C60—C61—H61C 109.5
C12—C13—H13A 120.7 H61A—C61—H61C 109.5
C14—C13—H13A 120.7 H61B—C61—H61C 109.5
C13—C14—C15 120.1 (8) O1—C60—C61 77.0 (18)
C13—C14—H14A 120.0 O1—C60—H60A 115.7
C15—C14—H14A 120.0 C61—C60—H60A 115.7
C14—C15—C16 122.8 (8) O1—C60—H60B 115.7
C14—C15—H15A 118.6 C61—C60—H60B 115.7
C16—C15—H15A 118.6 H60A—C60—H60B 112.7

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12A···Cl1i 0.95 2.89 3.593 (8) 132

Symmetry codes: (i) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5832).

References

  1. Anhaus, J. T., Kee, T. P., Schofield, M. H. & Schrock, R. R. (1990). J. Am. Chem. Soc. 112, 1642–1643.
  2. Baldwin, T. C., Huber, S. R., Bruck, M. A. & Wigley, D. E. (1993). Inorg. Chem. 32, 5682–5686.
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  4. Cockcroft, J. K., Gibson, V. C., Howard, J. A. K., Poole, A. D., Siemeling, U. & Wilson, C. (1992). J. Chem. Soc. Chem. Commun. pp. 1668–1670.
  5. Gibson, V. C. & Poole, A. D. (1995). J. Chem. Soc. Chem. Commun. pp. 2261–2262.
  6. Glueck, D. S., Wu, J. X., Hollander, F. J. & Bergman, R. G. (1991). J. Am. Chem. Soc. 113, 2041–2054.
  7. Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615–619.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siemens (1995). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  11. Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008). J. Appl. Cryst. 41, 955–957.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015650/hb5832sup1.cif

e-67-0m688-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015650/hb5832Isup2.hkl

e-67-0m688-Isup2.hkl (237.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES