Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 May 20;67(Pt 6):o1468. doi: 10.1107/S1600536811018654

3-(3-Fluoro­phenyl­sulfin­yl)-2,5,7-trimethyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3120630  PMID: 21754839

Abstract

In the title compound, C17H15FO2S, the 3-fluoro­phenyl ring makes a dihedral angle of 86.89 (4)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds. The crystal structure also exhibits a slipped π–π inter­action between the furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.719 (2) Å, inter­planar distance = 3.475 (2) Å and slippage = 1.325 Å].

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 3-(4-fluoro­phenyl­sulfin­yl)-2,5-dimethyl-1-benzofuran derivatives, see: Choi et al. (2010a ,b ).graphic file with name e-67-o1468-scheme1.jpg

Experimental

Crystal data

  • C17H15FO2S

  • M r = 302.35

  • Triclinic, Inline graphic

  • a = 6.2942 (2) Å

  • b = 11.1162 (4) Å

  • c = 11.8021 (6) Å

  • α = 110.701 (3)°

  • β = 100.176 (3)°

  • γ = 103.621 (2)°

  • V = 719.39 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.29 × 0.25 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.935, T max = 0.951

  • 12696 measured reflections

  • 3301 independent reflections

  • 2760 reflections with I > 2σ(I)

  • R int = 0.122

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.133

  • S = 1.07

  • 3301 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018654/ez2242sup1.cif

e-67-o1468-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018654/ez2242Isup2.hkl

e-67-o1468-Isup2.hkl (161.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018654/ez2242Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.51 3.227 (2) 134

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Many compounds containing a benzofuran ring system exhibit interesting pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-2,5-dimethyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound.

In the title compound (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-fluorophenyl ring makes a dihedral angle of 86.89 (4)° with the mean plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between a 3-fluorophenyl H atom and the O atom of the sulfinyl group (Table 1; C13—H13···O2i). The crystal packing (Fig. 2) is further stabilized by a weak slipped π–π interaction between the furan rings of neighbouring molecules, with a Cg···Cgii distance of 3.719 (2) Å and an interplanar distance of 3.475 (2) Å resulting in a slippage of 1.325 Å (Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

Experimental

77% 3-chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 3-(3-fluorophenylsulfanyl)-2,5,7-trimethyl-1-benzofuran (342 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 75%, m.p. 434–435 K; Rf = 0.72 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and π–π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 2, - y + 1, - z + 2 ; (ii) - x + , - y + 1, - z + 1.]

Crystal data

C17H15FO2S Z = 2
Mr = 302.35 F(000) = 316
Triclinic, P1 Dx = 1.396 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.2942 (2) Å Cell parameters from 5769 reflections
b = 11.1162 (4) Å θ = 2.2–27.5°
c = 11.8021 (6) Å µ = 0.24 mm1
α = 110.701 (3)° T = 296 K
β = 100.176 (3)° Block, colourless
γ = 103.621 (2)° 0.29 × 0.25 × 0.21 mm
V = 719.39 (5) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3301 independent reflections
Radiation source: rotating anode 2760 reflections with I > 2σ(I)
graphite multilayer Rint = 0.122
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 1.9°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −14→14
Tmin = 0.935, Tmax = 0.951 l = −15→15
12696 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: difference Fourier map
wR(F2) = 0.133 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.086P] where P = (Fo2 + 2Fc2)/3
3301 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.61779 (7) 0.50213 (4) 0.83763 (4) 0.02605 (15)
O1 0.2342 (2) 0.38830 (12) 0.49387 (10) 0.0275 (3)
O2 0.8652 (2) 0.52089 (14) 0.85568 (12) 0.0361 (3)
F1 0.7099 (2) 0.14993 (13) 1.00630 (12) 0.0517 (4)
C1 0.4798 (3) 0.42715 (17) 0.67501 (15) 0.0249 (3)
C2 0.5132 (3) 0.31895 (16) 0.57616 (15) 0.0250 (3)
C3 0.6547 (3) 0.23900 (18) 0.56868 (17) 0.0303 (4)
H3 0.7618 0.2516 0.6406 0.036*
C4 0.6325 (3) 0.14076 (18) 0.45232 (18) 0.0342 (4)
C5 0.4696 (3) 0.12330 (18) 0.34451 (18) 0.0350 (4)
H5 0.4573 0.0561 0.2670 0.042*
C6 0.3262 (3) 0.20148 (18) 0.34811 (16) 0.0307 (4)
C7 0.3566 (3) 0.29841 (16) 0.46668 (15) 0.0256 (4)
C8 0.3133 (3) 0.46537 (17) 0.62103 (15) 0.0253 (3)
C9 0.7843 (4) 0.0524 (2) 0.4405 (2) 0.0470 (5)
H9A 0.9238 0.0970 0.4290 0.070*
H9B 0.7075 −0.0332 0.3691 0.070*
H9C 0.8177 0.0373 0.5160 0.070*
C10 0.1525 (4) 0.1847 (2) 0.23408 (17) 0.0417 (5)
H10A 0.0034 0.1632 0.2459 0.063*
H10B 0.1568 0.1125 0.1608 0.063*
H10C 0.1863 0.2678 0.2226 0.063*
C11 0.2019 (3) 0.56740 (18) 0.67277 (17) 0.0324 (4)
H11A 0.0490 0.5220 0.6687 0.049*
H11B 0.1982 0.6205 0.6241 0.049*
H11C 0.2863 0.6259 0.7591 0.049*
C12 0.5032 (3) 0.35709 (16) 0.86983 (14) 0.0243 (3)
C13 0.6565 (3) 0.30906 (17) 0.92600 (15) 0.0280 (4)
H13 0.8132 0.3478 0.9441 0.034*
C14 0.5646 (3) 0.20107 (18) 0.95355 (17) 0.0326 (4)
C15 0.3363 (3) 0.14339 (18) 0.93105 (17) 0.0352 (4)
H15 0.2814 0.0706 0.9513 0.042*
C16 0.1877 (3) 0.19579 (19) 0.87727 (18) 0.0352 (4)
H16 0.0313 0.1583 0.8618 0.042*
C17 0.2699 (3) 0.30294 (18) 0.84667 (17) 0.0309 (4)
H17 0.1703 0.3384 0.8110 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0285 (3) 0.0248 (2) 0.0201 (2) 0.00624 (17) 0.00117 (16) 0.00820 (17)
O1 0.0280 (6) 0.0311 (6) 0.0233 (6) 0.0126 (5) 0.0020 (5) 0.0117 (5)
O2 0.0248 (6) 0.0437 (7) 0.0335 (7) 0.0014 (5) −0.0012 (5) 0.0196 (6)
F1 0.0560 (8) 0.0466 (7) 0.0606 (8) 0.0225 (6) 0.0038 (6) 0.0334 (7)
C1 0.0251 (8) 0.0269 (8) 0.0228 (8) 0.0100 (6) 0.0033 (6) 0.0111 (7)
C2 0.0256 (8) 0.0249 (8) 0.0247 (8) 0.0080 (7) 0.0053 (6) 0.0115 (7)
C3 0.0283 (9) 0.0320 (9) 0.0349 (9) 0.0141 (7) 0.0078 (7) 0.0163 (8)
C4 0.0365 (10) 0.0290 (9) 0.0430 (11) 0.0148 (8) 0.0173 (8) 0.0159 (8)
C5 0.0454 (11) 0.0257 (8) 0.0300 (9) 0.0093 (8) 0.0147 (8) 0.0067 (8)
C6 0.0352 (9) 0.0274 (8) 0.0255 (8) 0.0058 (7) 0.0078 (7) 0.0098 (7)
C7 0.0267 (8) 0.0248 (8) 0.0250 (8) 0.0091 (7) 0.0059 (7) 0.0104 (7)
C8 0.0267 (8) 0.0264 (8) 0.0222 (8) 0.0084 (7) 0.0040 (6) 0.0110 (7)
C9 0.0534 (13) 0.0413 (11) 0.0591 (13) 0.0285 (10) 0.0272 (11) 0.0216 (11)
C10 0.0533 (12) 0.0370 (10) 0.0235 (9) 0.0065 (9) 0.0003 (8) 0.0101 (8)
C11 0.0341 (10) 0.0335 (9) 0.0336 (9) 0.0173 (8) 0.0086 (8) 0.0148 (8)
C12 0.0290 (8) 0.0238 (8) 0.0164 (7) 0.0082 (6) 0.0034 (6) 0.0058 (6)
C13 0.0275 (8) 0.0291 (8) 0.0241 (8) 0.0100 (7) 0.0031 (7) 0.0088 (7)
C14 0.0439 (10) 0.0287 (8) 0.0261 (8) 0.0176 (8) 0.0051 (8) 0.0109 (7)
C15 0.0465 (11) 0.0263 (9) 0.0292 (9) 0.0071 (8) 0.0104 (8) 0.0104 (7)
C16 0.0306 (9) 0.0335 (9) 0.0360 (10) 0.0046 (8) 0.0098 (8) 0.0116 (8)
C17 0.0270 (8) 0.0339 (9) 0.0292 (9) 0.0107 (7) 0.0038 (7) 0.0116 (8)

Geometric parameters (Å, °)

S1—O2 1.4876 (13) C9—H9A 0.9600
S1—C1 1.7527 (16) C9—H9B 0.9600
S1—C12 1.8017 (17) C9—H9C 0.9600
O1—C8 1.3639 (19) C10—H10A 0.9600
O1—C7 1.3851 (19) C10—H10B 0.9600
F1—C14 1.357 (2) C10—H10C 0.9600
C1—C8 1.360 (2) C11—H11A 0.9600
C1—C2 1.437 (2) C11—H11B 0.9600
C2—C7 1.389 (2) C11—H11C 0.9600
C2—C3 1.391 (2) C12—C17 1.386 (2)
C3—C4 1.378 (3) C12—C13 1.386 (2)
C3—H3 0.9300 C13—C14 1.377 (3)
C4—C5 1.407 (3) C13—H13 0.9300
C4—C9 1.513 (2) C14—C15 1.363 (3)
C5—C6 1.389 (3) C15—C16 1.388 (3)
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.378 (2) C16—C17 1.377 (3)
C6—C10 1.499 (2) C16—H16 0.9300
C8—C11 1.479 (2) C17—H17 0.9300
O2—S1—C1 108.38 (8) H9A—C9—H9C 109.5
O2—S1—C12 105.93 (7) H9B—C9—H9C 109.5
C1—S1—C12 97.25 (7) C6—C10—H10A 109.5
C8—O1—C7 106.64 (12) C6—C10—H10B 109.5
C8—C1—C2 107.69 (14) H10A—C10—H10B 109.5
C8—C1—S1 123.27 (13) C6—C10—H10C 109.5
C2—C1—S1 129.04 (12) H10A—C10—H10C 109.5
C7—C2—C3 119.25 (15) H10B—C10—H10C 109.5
C7—C2—C1 104.76 (13) C8—C11—H11A 109.5
C3—C2—C1 135.99 (15) C8—C11—H11B 109.5
C4—C3—C2 118.52 (16) H11A—C11—H11B 109.5
C4—C3—H3 120.7 C8—C11—H11C 109.5
C2—C3—H3 120.7 H11A—C11—H11C 109.5
C3—C4—C5 119.93 (16) H11B—C11—H11C 109.5
C3—C4—C9 119.97 (17) C17—C12—C13 121.95 (16)
C5—C4—C9 120.09 (18) C17—C12—S1 120.18 (12)
C6—C5—C4 123.21 (17) C13—C12—S1 117.72 (13)
C6—C5—H5 118.4 C14—C13—C12 116.56 (16)
C4—C5—H5 118.4 C14—C13—H13 121.7
C7—C6—C5 114.34 (16) C12—C13—H13 121.7
C7—C6—C10 121.75 (17) F1—C14—C15 118.44 (17)
C5—C6—C10 123.91 (17) F1—C14—C13 118.02 (17)
C6—C7—O1 124.90 (15) C15—C14—C13 123.54 (16)
C6—C7—C2 124.74 (15) C14—C15—C16 118.45 (17)
O1—C7—C2 110.36 (14) C14—C15—H15 120.8
C1—C8—O1 110.54 (14) C16—C15—H15 120.8
C1—C8—C11 133.15 (16) C17—C16—C15 120.52 (17)
O1—C8—C11 116.28 (13) C17—C16—H16 119.7
C4—C9—H9A 109.5 C15—C16—H16 119.7
C4—C9—H9B 109.5 C16—C17—C12 118.94 (16)
H9A—C9—H9B 109.5 C16—C17—H17 120.5
C4—C9—H9C 109.5 C12—C17—H17 120.5
O2—S1—C1—C8 −138.58 (15) C1—C2—C7—C6 −178.81 (16)
C12—S1—C1—C8 111.91 (16) C3—C2—C7—O1 −179.52 (15)
O2—S1—C1—C2 41.89 (18) C1—C2—C7—O1 0.63 (19)
C12—S1—C1—C2 −67.61 (17) C2—C1—C8—O1 0.7 (2)
C8—C1—C2—C7 −0.79 (19) S1—C1—C8—O1 −178.92 (12)
S1—C1—C2—C7 178.79 (14) C2—C1—C8—C11 178.47 (19)
C8—C1—C2—C3 179.4 (2) S1—C1—C8—C11 −1.1 (3)
S1—C1—C2—C3 −1.0 (3) C7—O1—C8—C1 −0.30 (19)
C7—C2—C3—C4 −0.7 (3) C7—O1—C8—C11 −178.49 (15)
C1—C2—C3—C4 179.12 (19) O2—S1—C12—C17 −172.33 (13)
C2—C3—C4—C5 0.1 (3) C1—S1—C12—C17 −60.80 (15)
C2—C3—C4—C9 179.70 (17) O2—S1—C12—C13 12.06 (14)
C3—C4—C5—C6 0.2 (3) C1—S1—C12—C13 123.59 (13)
C9—C4—C5—C6 −179.39 (19) C17—C12—C13—C14 2.3 (2)
C4—C5—C6—C7 0.1 (3) S1—C12—C13—C14 177.84 (12)
C4—C5—C6—C10 179.67 (18) C12—C13—C14—F1 178.73 (15)
C5—C6—C7—O1 179.93 (16) C12—C13—C14—C15 −1.5 (3)
C10—C6—C7—O1 0.3 (3) F1—C14—C15—C16 179.91 (16)
C5—C6—C7—C2 −0.7 (3) C13—C14—C15—C16 0.1 (3)
C10—C6—C7—C2 179.67 (17) C14—C15—C16—C17 0.5 (3)
C8—O1—C7—C6 179.21 (16) C15—C16—C17—C12 0.3 (3)
C8—O1—C7—C2 −0.23 (19) C13—C12—C17—C16 −1.8 (3)
C3—C2—C7—C6 1.0 (3) S1—C12—C17—C16 −177.22 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13···O2i 0.93 2.51 3.227 (2) 134

Symmetry codes: (i) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2242).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  9. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811018654/ez2242sup1.cif

e-67-o1468-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811018654/ez2242Isup2.hkl

e-67-o1468-Isup2.hkl (161.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811018654/ez2242Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES