Abstract
Background
Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell formation-related genes candidates.
Principal Findings
We employed the GS FLX 454 system and constructed transcriptome data sets from pallial mantle and pearl sac, which form the nacreous layer, and from the mantle edge, which forms the prismatic layer in P. fucata. We sequenced 260477 reads and obtained 29682 unique sequences. We also screened novel nacreous and prismatic gene candidates by a combined analysis of sequence and expression data sets, and identified various genes encoding lectin, protease, protease inhibitors, lysine-rich matrix protein, and secreting calcium-binding proteins. We also examined the expression of known nacreous and prismatic genes in our EST library and identified novel isoforms with tissue-specific expressions.
Conclusions
We constructed EST data sets from the nacre- and prism-producing tissues in P. fucata and found 29682 unique sequences containing novel gene candidates for nacreous and prismatic layer formation. This is the first report of deep sequencing of ESTs in the shell-forming tissues of P. fucata and our data provide a powerful tool for a comprehensive understanding of the molecular mechanisms of molluscan biomineralization.
Introduction
Because of its high industrial value, nacreous layer formation in the pearl oyster is a well-studied phenomenon. The shell of pearl oysters consists of 2 distinct structures: inner nacreous layers composed of aragonite and outer prismatic layers composed of calcite (reviewed in [1]). One of the most interesting questions in biomineralization is how 2 polymorphs of calcium carbonate are produced in the same organism. Pearl oysters initiate shell formation with amorphous calcium carbonate, which is transformed into either calcite or aragonite [2]–[4]. These transformation processes are thought to be regulated by proteins secreted from epithelial cells in outer mantle tissues [1], [5]. These proteins form a biomineral framework and regulate the nucleation and growth of calcium carbonate. The differences in the composition of proteins secreted from the outer mantle tissues generate the calcite and aragonite polymorphs of calcium carbonate [1], [6]. Nacreous and prismatic layers are formed in different regions of the outer mantle. The ventral part of the mantle (mantle edge) forms the prismatic layers, whereas the dorsal part of the mantle (pallium) forms the nacreous layers (Fig. 1A). In pearl oyster culture, grafts from recipient pallia are transplanted with nuclei into the gonad of mother oysters. Pearl sac tissues are formed by proliferation of epithelial cells originating from the outer mantle graft where various proteins are secreted to form the nacreous layers [7], [8] (see Fig. 1A). Extensive studies have been conducted to identify the proteins responsible for shell formation by screening proteins contained in the shell and genes specifically expressed in the mantle (reviewed in [1]). A wide variety of proteins and genes have been identified and their functions in shell formation have been partially characterized. So far, however, there have been no systematic studies on the entire transcriptome in pearl oyster shell formation and our understanding of the molecular mechanisms involved in pearl oyster shell formation is fragmented. Annotated gene sets for pearl oyster in the DDBJ/EMBL/GenBank databases are quite limited and there is no high-density whole-genome database.
Here, we present the first report of deep sequencing of ESTs from the pearl oyster Pinctada fucata using a next-generation sequencer. The aim of this study was to develop a high-throughput experimental approach for transcriptome analysis in shell-formation tissues including mantle edge, pallium, and pearl sac of P. fucata. We sequenced 260477 reads and identified 29682 unique sequences. We also screened novel shell formation-related gene candidates by a combined analysis of sequence and expression data sets.
Materials and Methods
RNA isolation and library construction
P. fucata martensii mantle and pearl sac tissues were collected in September 2009 from 4 individuals maintained at the Mikimoto pearl farm, Mie, Japan. Mantle pieces had been grafted to all individuals for pearling in April 2009. To address whether the pearl sac actually produced the nacreous layers, peal oysters were harvested and pearls in the peal sac were observed by scanning electron microscopy (Fig. 1B, C). The mantle edge and pallial mantle tissues were separated from the mantle and these tissues, including the pearl sac, were preserved in RNAlater (Applied Biosystems, Foster City, CA, USA).
Total RNA was extracted with the RNeasy Lipid Tissue Mini Kit (QIAGEN, Hilden, Germany) and 3′-fragment sequencing was performed at Operon Biotechnology, Tokyo, Japan, where we employed pyrosequencing to sequence the transcriptome, using the GS FLX 454 system (Roche, Basel, Switzerland). An important advantage of this platform is that we are able to conduct transciptome analysis even in organisms for which we have no genome or EST data sets. The preparation of 3′-fragment cDNAs was as follows: equal quantities of total RNAs from 4 individuals were pooled and fragmented by ultrasonication. Poly(A)+ RNAs were isolated from the fragmented total RNAs and a RNA adapter was ligated to the 5′-phosphate of the poly(A)+ RNA. First-strand cDNA synthesis was performed using an oligo(dT)-adapter primer. The 3′-fragment cDNA products were PCR-amplified to about 40 ng/µl.
Sequence analysis and bioinformatics
3′-fragment sequences were obtained by the Genome Sequencer FLX protocol (Roche). After quality trimming of raw reads, a de novo assembly using MIRA assembler ver. 2.9.45×1 and the BLAST Clust program from NCBI were used to the assemble reads. Clustered EST data sets were annotated using blast2go (http://blast2go.bioinfo.cipf.es/). This program takes a query collection of nucleotide sequences and uses the blastx algorithm to search a UniProt database by gene ontology (GO). We used an expect value of 1E-10 for the blastx searches. When multiple annotations were returned, the annotation with the best score was saved. To search the functional domains of the novel proteins we identified, we used the InterProScan program (http://www.ebi.ac.uk/Tools/InterProScan/).
Known nacreous and prismatic gene sequences were searched using the local blastn and tblastn algorithms against the P. fucata EST data set: MSI60 [9], MSI25 (DDBJ/EMBL/GenBank accession number: AB210136), Pif177 [10], nacrein [11], N66 [12], P. fucata mantle gene 1 (PFMG1) [13], amorphous calcium carbonate-binding protein (ACCBP) [14], N16s [12], [15], calmodulin-like protein (CaLP) [16], N19 [17], aspein [18], prismalin-14 [19], Lys-rich matrix proteins 1-4 (KRMPs 1–4) [20], prismin [21], prisilkin-39 [22], and shematrins 1–7 [23]. Novel gene candidates with possible shell-formation associations were searched using the same method against EST data sets of abalone Haliotis asinina (8341 ESTs), Mediterranean mussel Mytilus galloprovincialis (19753 ESTs) and Japanese scallop Mizuhopecten yessoensis (9100 ESTs) in the DDBJ/EMBL/GenBank databases.
Gene expression was represented as transcripts per million (TPM) which corresponds to (total reads of a given gene/total reads in the tissue) ×106. Cluster analysis based on the TPM was performed by CLUSTER3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv) using Euclidean distance, and Java TreeView (http://jtreeview.sourceforge.net/) was used to visualize clustering relationships.
All sequence data sets obtained in this study have been registered to the DDBJ Sequence Read Archive (project number 63487).
5′Rapid amplification of cDNA ends (RACE)
We performed 5′-RACE to determine the full-length sequence of gene 000096. Gene-specific primers 000096-R1 (5′-GGTTTTGGTTTGACAGGTGC-3′) and 000096-R2 (5′-CGCCCAATTGCACGTTCCTC-3′) were designed from a partial gene sequence. Total RNA was extracted from the pallial mantle with the ISOGEN kit (Nippon Gene, Tokyo, Japan). 5′-RACE was performed with the GeneRacer Advanced RACE kit (Invitrogen, Carlsbad, CA, USA). 5′-RACE products were subcloned into pGEM-T (Promega, Madison, WI, USA) and sequenced on an ABI3100 Genetic Analyzer (Applied Biosystems).
Results
Library features
We acquired 508,730 reads (Table 1). After quality trimming, 260477 single pass 3′-reads, 68690 from the mantle edge, 83629 from the pallium, and 108095 from the pearl sac produced 29,682 unique sequences automatically numbered by the BLAST Clust program as 000001-029682. The average contig length was 495 bp (range 118–2065 bp) and the average total read was 8.8 (range 1–2460). Based on the blastx algorithm with cut-off at 1E-10, most of the 29682 genes shared no homology with known protein sequences (Fig. 2A). GO composition of annotated genes was almost the same in each tissue (Fig. 2B), whereas the expression of 29682 genes was variable between tissues (Fig. 2C).
Table 2. Genes dominantly expressed in nacreous layer-producing tissues.
Gene | TPM | Total reads | Homology by Blastx | E-value | Source | Description | |||
ME | P | PS | |||||||
known P. fucata gene | N151(000362) | 218 | 753 | 500 | 132 | - | - | Pinctada fucata | - |
MSI25(000348) | 29 | 406 | 120 | 49 | - | - | Pinctada fucata | - | |
homology with known genes | 000027 | 641 | 1744 | 3432 | 561 | ribosomal protein l32 | 4.81E-55 | Sipunculus nudus | structural constituent of ribosome |
000488 | 102 | 215 | 962 | 129 | small nuclear ribonucleoprotein | 1.08E-37 | Salmo salar | RNA binding | |
000591 | 44 | 203 | 777 | 104 | zinc finger protein 593 | 3.70E-29 | Danio rerio | transcription factor | |
001311 | 87 | 335 | 241 | 60 | elongation factor 2 | 3.09E-82 | Drosophila virili | translation | |
001181 | 44 | 108 | 435 | 59 | dynein light chain | 1.50E-45 | Brugia malayi | cytoskeletal activity | |
001194 | 58 | 179 | 194 | 40 | 60s ribosomal protein l37 | 3.55E-34 | Eurythoe complanata | structural constituent of ribosome | |
no homology with known genes | 000096 | 437 | 1446 | 2701 | 443 | no hit | - | - | - |
000280 | 204 | 741 | 981 | 182 | no hit | - | - | - | |
000302* | 73 | 1099 | 194 | 118 | no hit | - | - | - | |
000629 | 160 | 394 | 361 | 83 | no hit | - | - | - | |
000298* | 73 | 633 | 213 | 81 | no hit | - | - | - | |
000569 | 167 | 481 | 70 | no hit | - | - | - | ||
000677 | 102 | 275 | 342 | 67 | no hit | - | - | - | |
001201 | 29 | 323 | 333 | 65 | no hit | - | - | - | |
000738 | 29 | 60 | 500 | 61 | no hit | - | - | - | |
000585 | 58 | 179 | 361 | 58 | no hit | - | - | - | |
000560 | 73 | 335 | 213 | 56 | no hit | - | - | - | |
001159 | 44 | 143 | 352 | 53 | no hit | - | - | - | |
000545 | 102 | 227 | 213 | 49 | no hit | - | - | - | |
000464 | 102 | 191 | 241 | 49 | no hit | - | - | - | |
000424 | 73 | 167 | 241 | 45 | no hit | - | - | - | |
000858 | 87 | 239 | 167 | 44 | no hit | - | - | - | |
000753 | 58 | 227 | 176 | 42 | no hit | - | - | - | |
000837 | 58 | 143 | 231 | 41 | no hit | - | - | - | |
000653 | 29 | 72 | 305 | 41 | no hit | - | - | - | |
000964 | 58 | 155 | 222 | 41 | no hit | - | - | - | |
000795 | 73 | 155 | 204 | 40 | no hit | - | - | - |
Genes expressed over 2 times higher in the pallium or pearl sac than in the mantle edge in terms of TMP are listed.
*These genes were also retrieved in Fig. 9.
Abbreviations are: TPM, transcripts per million; ME, mantle edge; P, pallium; PS, pearl sac.
Because of the low accuracy of determining the expression levels of genes with low reads, we cut off genes under 40 reads in the following expression analyses. Our EST library contained 796 genes with ≥40 reads. Total reads from 796 genes accounted for 52% of the total transcriptome sampled in this study. The characteristics of genes with ≥40 reads are shown in Fig. S1.
Genes with ≥40 reads predominantly expressed in nacre-producing tissues
First, we screened shell formation-related gene candidates by a simple strategy of retrieving genes by their dominant expression in nacre-producing tissues including the pallium and peal sac, both of which showed at least a 2-fold difference in expression in comparison to those in the mantle edge. Among the 796 genes with ≥40 reads, 29 genes were retrieved (Table 2). Two known P. fucata genes, MSI25 and N151 (DDBJ/EMBL/GenBank accession number: AB534773), were also retrieved. MSI25 is a nacreous gene and is predominantly expressed in the pallium. Although the function of N151 has not been characterized, our results strongly suggest its participation in nacreous layer formation. Two ribosomal protein genes, 000027 and 001194, were also identified by this screen. Furthermore, 4 genes, 000488, 000591, 001181, and 001311, shared significant homology with E-value under 1.0E-10. The remaining 21 genes showed no significant homology to known sequences.
The full-length cDNA sequence of gene 000096
Except for ribosomal proteins, the 443 total reads of 000096 exhibited the highest expression among genes expressed in nacre-producing tissues (Table 2). Interestingly, 000096 shared homology with a protein containing a galactose-binding lectin domain. Lectin is an important shell formation-related protein [24]–[27]. Therefore, we determined the full-length sequence of the 000096 cDNA by 5′-RACE (DDBJ/EMBL/GenBank accession number: AB635374). 000096 consisted of 486 bp encoding 108 amino acid residues (Fig. 3A). The InterProScan program demonstrated that 000096 contains an N-terminal signal peptide and a galactose-binding lectin domain at its C terminus (Fig. 3B). Figure 3C shows a comparison of the putative Gal-binding lectin domain encoded by 000096 with those of lectin domains from pearl oyster Pteria penguin, Florida lancelet Branchiostoma floridae, and zebrafish Danio rerio. The positions of cysteine residues in each domain were well conserved.
Expression levels of known nacreous and prismatic genes in mantle edge, pallium and pearl sac
We also examined the expression of known nacreous and prismatic genes in our EST libraries. Although many studies have identified genes and proteins that are related to nacreous and prismatic layer formation, functional analyses have been limited. Among the previously reported genes, we selected 11 nacreous and 14 prismatic genes from the pearl oyster P. fucata and related species P. maxima (Table S1). We detected novel isoforms of PFMG1 (PFMG1-2), N16s (N16.6 and N16.7), N19 (N19-2), shematrin1 (shematrin1-2) and shematrin2 (shematrin2-2) (Figs. S2 and S3); thus the expression of 31 genes was analyzed in the mantle edge, pallium, and pearl sac as shown in Figs. 4 and 5.
Eleven out of 15 previously reported nacreous genes showed predominant expression in the pallium, verifying their function in nacreous layer formation (Fig. 4, Table S1). Among the nacreous genes with ≥40 reads, MSI60, Pif177, nacrein and N16.7 showed the greatest expression in the pallium, suggesting their importance in nacreous layer formation. We noted that N66, PFMG1, N19 and N16.7 were specifically expressed in the pallium. In contrast, 4 nacreous genes (ACCBP, CaLP, N16.5 and N16.6) were more highly expressed in the mantle edge than in the pallium, suggesting their additional roles in prismatic layer formation. Although the expression of most nacreous genes was relatively low in the pearl sac, MSI60 and MSI25 were more highly expressed in this tissue than in the mantle edge. Interestingly, N19-2 and N16.3 were expressed specifically in the pearl sac.
Meanwhile, the expression of most known prismatic genes did not differ between the pallium and mantle edge except for shematrin3, shematrin4 and shematrin7, which were predominantly or exclusively expressed in the mantle edge. We noted that shematrin5 showed much greater expression in the pallium than in the mantle edge (Fig. 5, Table S1). Moreover, shematrin1-2 expression was specific to the pallium.
Genes showing homology with known nacreous and prismatic ones
We screened the genes showing homology with known shell formation-related genes from 796 genes with ≥40 reads. The deduced amino acid sequences of genes 006605 and 000496 shared homology with KRMP1 and N19, respectively (Fig. 6). KRMP1 is a lysine-rich matrix protein expressed in mantle edge of P. fucata [20], consisting of an N terminal signal peptide, lysine-rich basic region, and a C terminal glycine/tyrosine-rich region (Fig. 6A). The protein encoded by 006605 also contained an N terminal signal peptide and lysine-rich basic region, but lacked a glycine/tyrosine-rich region. Instead of the glycine/tyrosine-rich region, the protein contained 7 G(R/W)RR(N/Y/W) repeats at its C terminus, suggesting that 006605 is functionally different from KRMP1.
N19 inhibits CaCO3 crystallization and is contained in the nacreous layer of P. fucata [17]. InterProScan indicated that N19 and the 000496 encoded protein both have N-terminal signal sequences (Fig. 6B), although the amino acid identity between these proteins is low (36%). The expression of 000496 and 006605 was highly specific to the pallium (Fig. 6), suggesting their role in the nacreous layer formation.
The PFMG1 sequence probe identified 5 genes from the EST library: 000262, 000390, 000493, 000594, and 002138 (Fig. 7A). Amino acid identities of these gene products with PFMG1 were 14–62%. We noted that 000390 and 000594 lacked an initial methionine and were thus considered to be larger molecules than those shown in Fig. 7A. PFMG1 was originally identified as one of the genes expressed in the mantle of P. fucata [13]. It encodes an EF-hand calcium-binding domain and promotes calcite formation in vitro. InterProScan indicated that all 5 proteins contain an EF-hand calcium-binding domain (Fig. 7B). The existence of this domain is thought to be the reason why these 5 genes were identified in the screen. However the structural properties of these genes are different from those of PFMG1. For example, 000262, 000493, and 002138 have signal peptides, whereas 000594 has a transmembrane domain (Fig. 7B), suggesting that these proteins are functionally different from PFMG1. Transcripts of 000262, 000390 and 000594 were detected in the mantle edge more than in the pallium, whereas the distribution of 000493 and 002138 transcripts was reversed, suggesting functional differences between these groups in shell formation.
Genes with homology to known nacreous and prismatic genes in Figs. 4 and 5 other than N19, KRMP1 and PFMG1 were not detected among the 796 genes with ≥40 reads.
Screening of shell formation-related genes by cluster analysis for their expression patterns in different tissues
For further screening of novel shell formation-related gene candidates among the 796 genes with ≥40 reads, cluster analysis by CLUSTER3.0 was performed based on their expression patterns in different tissues (Fig. S4). We divided the genes into highly expressed (≥200 reads, 195 genes) and moderately expressed (40–199 reads, 601 genes) groups. Genes that clustered with known nacreous and prismatic genes were selected (Figs. 8 and 9). Note that N66, PFMG1, PFMG1-2, ACCBP, N16.6, N19, and N19-2 in Fig. 4, and shematrin1-2, 3, and 4 in Fig. 5 were excluded from this analysis because of their low expression levels (<40 reads, see Table S1).
Among the known nacreous genes, nacrein and MSI60 formed a cluster with 4 genes (Fig. 8, Table 3). One of them, gene 000098, showed homology with bovine SCO-spondin with moderate significance (Table 3). N16.5 was expressed more abundantly in the mantle edge than in the pallium. N16.5 formed a cluster with another 2 genes with high homology to ATP synthase subunit B and cytochrome b (Table 3). MSI25 formed a cluster with 3 genes. MSI25, 00032, and 000298 were also identified as genes that are abundantly expressed in nacre-producing tissues (Table 1, see also Fig. 4). CaLP was expressed more abundantly in the mantle edge than in the pallium. CaLP formed a cluster with another 3 genes. One of these, 000372, encoded a protein with highly significant homology to a Kunitz-like protease inhibitor (DDBJ/EMBL/GenBank accession number: AF533590) (Table 3). The expression of Pif177 and N16.7 was highly specific to the pallium (see also Fig. 4) and clustered with 5 genes. One of them, 004131, shared homology with a predicted protein from Nematostella vectensis (DS469772) that contains a sugar-binding lectin domain. We noted that 006605 was also retrieved as a gene with homology to KRMP1 (Fig. 6B). N16.3 was abundantly expressed in and highly specific to the pearl sac (see Fig. 4). Three genes, 003764, 004097, and 003971, formed a cluster with N16.3 and showed similar expression patterns. Gene 003764 shared highly significant homology with a metalloendopeptidase (DS469673) (Table 3).
Table 3. Candidates of the shell formation-related genes found by cluster analysis.
Gene | Homology by Blastx | E-value | Source | Description | Relation to the shell formation |
Clustered with known nacreous genes | |||||
Clustered with nacrein & MSI60 | |||||
000098 | SCO-spondin | 3.00E-13 | Bos taurus | Secreted glycoprotein, Act in neuronal development | Unknown |
000133 | No hit | - | - | - | - |
000118 | No hit | - | - | - | - |
000081 | No hit | - | - | - | - |
Clustered with N16.5 | |||||
000417 | ATP synthase subunit B | 2.00E-23 | Xenopus tropicalis | ATP synthesis in mitochondria | Unknown |
000615 | Cytochrome b | 1.00E-67 | Mytilus edulis | Electron transport, ATP synthesis in mitochondria | Unknown |
Clustered with MSI25 | |||||
000302 | No hit | - | - | - | - |
000818 | No hit | - | - | - | - |
000298 | No hit | - | - | - | - |
Clustered with CalP | |||||
000135 | No hit | - | - | - | |
000372 | Kunitz-like protease inhibitor | 3.00E-27 | Ancylostoma caninum | Serine protease inhibitor activity | Various protease inhibitors are contained in bivalve shells |
000426 | No hit | - | - | - | - |
Clustered with Pif177 & N16.7 | |||||
028433 | No hit | - | - | - | |
004131 | Predicted protein | 5.00E-17 | Nematostella vectensis | Sugar binding lectin domain | Lectin is contained in bivalve shells |
003843 | No hit | - | - | - | - |
006605** | No hit | - | - | - | - |
006152 | No hit | - | - | - | - |
Clustered with N116.3 | |||||
003764 | Protein v1g120119 | 1.86E-23 | Nematostella vectensis | Metalloprotease activity | Metaroproteases are important in the bone formation |
004097 | No hit | - | - | - | - |
003971 | No hit | - | - | - | - |
Clustered with known prismatic genes | |||||
Clustered with prismalin-14 | |||||
000057 | No hit | - | - | - | - |
000025 | No hit | - | - | - | - |
000187 | Primary amine oxidase | 5.00E-36 | Branchiostoma floridae | Primary amine oxidase activity | Unknown |
Clustered with prismin, aspein, shematrin1, shematrin6 | |||||
000010 * | Mantle gene 10 (PFMG10) | 6.00E-88 | Pinctada fucata | Serine protease inhibitor domain | Expressed in mantle cells |
000077 | No hit | - | - | - | - |
000228 | Kazal-type serine proteinase inhibitor | 4.00E-16 | Chlamys farreri | Serine peotease inhibitor activity | Various protease inhibitors are contained in bivalve shells |
000148 | No hit | - | - | - | - |
000049 | No hit | - | - | - | - |
000138 | No hit | - | - | - | - |
Clustered with KRMP1 | |||||
000063 | No hit | - | - | - | - |
000065 | No hit | - | - | - | - |
000104 | Intermediate filament protein | 3.50E-11 | Aplysia californica | Cytoskeleton | Unknown |
Clustered with KRMP3 | |||||
000215 | Hypothetical protein | 2.37E-19 | Hydra magnipapillata | Unknown function | Unknown |
000040 | No hit | - | - | - | - |
000301 | No hit | - | - | - | - |
Clustered with KRMP4 | |||||
000002 * | Mantle gene 4 (PFMG4) | 4.03E-72 | Pinctada fucata | Unknown function | Expressed in mantle cells |
000008 | No hit | - | - | - | - |
Clustered with prisilkin-39 | |||||
002071 | No hit | - | - | - | - |
000514 | No hit | - | - | - | - |
Clustered with shematrin2 | |||||
000034 | No hit | - | - | - | - |
Clustered with shematrin2-2 | |||||
000009 * | Mantle gene 5 (PFMG5) | 1.46E-40 | Pinctada fucata | Unknown function | Expressed in mantle cells |
000272 | No hit | - | - | - | - |
Clustered with shematrin5 | |||||
001253 | No hit | - | - | - | - |
002138** | No hit | - | - | - | - |
000675 | No hit | - | - | - | - |
Clustered with shematrin7 | |||||
000333 | No hit | - | - | - | - |
000509 | No hit | - | - | - | - |
001369 | No hit | - | - | - | - |
000807 | Protein W01F3.3a | 1.00E-11 | Caenorhabditis elegans | Kunitz-type serine protease inhibitor domain | Various protease inhibitors are contained in bivalve shells |
*000002, 000009, and 000010 were identified as PFMG4, PFMG5, and PFMG10, respectively.
**006605 and 002138 shared homology with KRMP1 and PFMG1, respectively.
Genes identified as known P. fucata genes and sharing significant homology with known genes are boldfaced and italicized, respectively.
Table 1. Summary of GS-FLX sequencing results.
Feature | Number |
Read number | 508730 |
-Mantle edge | 147870 |
-Pallium | 176175 |
-Pearl sac | 184685 |
Number of assembled reads | 260477 |
-Mantle edge | 68690 |
-Pallium | 83692 |
-Pearl sac | 108095 |
Average read length (bp) | 354 |
-Mantle edge | 361 |
-Pallium | 357 |
-Pearl sac | 347 |
Number of contigs | 29682 |
-Mantle edge | 8533 |
-Pallium | 11353 |
-Pearl sac | 14883 |
Average length of contigs (bp) | 495 |
-max. | 2065 |
-min. | 118 |
Average reads of contigs | 8.8 |
-max. | 2460 |
-min. | 1 |
Among the prismatic genes, prismin, aspein, shematrin1, and shematrin6 were expressed both in the pallium and mantle edge at similar levels, and clustered with another 6 genes (Fig. 9, Table 3, see also Fig. 5). Among them, 000010 was identified as P. fucata mantle gene 10 (PFMG10) (Table 3). PFMG10 was originally isolated from a mantle cDNA library of P. fucata [13], and encodes a Kazal-type serine protease inhibitor with a follistatin-like domain. We noted that 000228 in the same cluster also shared a significant homology with a Kazal-type serine protease inhibitor from Chlamys farreri (EU183309) (Table 3). Shematrin2 was expressed in the mantle edge and pallium at a similar level, forming a cluster with one gene. KRMP1, KRMP3, prisilkin-39, shematrin2-2, and shematrin7 were expressed in the mantle edge more than in the pallium (Fig. 5). They formed clusters with another 3, 3, 2, 2 and 4 genes, respectively. Gene 000009 clustered with shematrin2-2 and was identified as P. fucata mantle gene 5 (PFMG5). PFMG5 was isolated from the mantle cDNA library of P. fucata [13], although its function has not been clarified. It was noted that 000807 clustered with shematrin7 and shared significant homology with a Caenorhabditis elegans protein containing a Kunitz-type serine protease inhibitor domain (CAX65076.1). Prismalin-14, KRMP4 and shematrin5, which were more highly expressed in the pallium than in the mantle edge, were clustered with another 3, 2, and 3 genes, respectively. Gene 002138 showed homology with PFMG1, which contains an EF-hand calcium-binding domain (Fig. 7). Gene 000002 was identified as P. fucata mantle gene 4 (PFMG4). PFMG4 in the mantle of P. fucata contains a complement component C1q domain [13].
Distribution of shell formation-related gene candidates in other shellfish species
In this study, 79 shell formation-related gene candidates were retrieved from P. fucata EST data sets. We examined the presence of these candidates in other shellfish species including abalone H. asinina, Mediterranean mussel M. galloprovincialis and Japanese scallop M. yessoensis. Eighteen of the 79 genes were detected with significant homology in these species (Table 4), and 61 genes were unique to P. fucata and shared no similarity with ESTs in the comparator species.
Table 4. Distribution of shell formation-related gene candidates in different shellfish species.
Pinctada fucata | Haliotis asinina(8341 ESTs) | Mytilus galloprovincialis(19753 ESTs) | Mizuhopecten yessoensis(9100 ESTs) | |||||||
Gene | Description | Accession number | E-value | Mantle expression | Accession number | E-value | Mantle expression | Accession number | E-value | Mantle expression |
000027 | P & PS specific | GT277644.1 | 4.00E-69 | yes | FL593283.1 | 9.00E-74 | unknown | GR867732.1 | 3.00E-70 | yes |
000488 | P & PS specific | no hit | - | - | no hit | - | - | GT569198.1 | 1.00E-39 | unknown |
000591 | P & PS specific | no hit | - | - | FL490187.1 | 8.00E-42 | unknown | GH735420.1 | 4.00E-58 | unknown |
001181 | P & PS specific | GT273372.1 | 1.00E-58 | yes | EH663240.1 | 5.00E-57 | unknown | no hit | - | - |
001194 | P & PS specific | GT272497.1 | 4.00E-42 | yes | no hit | - | - | GT568920.1 | 2.00E-39 | unknown |
001311 | P & PS specific | no hit | - | - | FL497401.1 | 3.00E-99 | unknown | no hit | - | - |
000098 | Clustered with nacrein & MSI60 | no hit | - | - | FL497315.1 | 3.00E-23 | unknown | no hit | - | - |
000417 | Clustered with N16.5 | DW986478.1 | 5.00E-24 | yes | FL594996.1 | 4.00E-33 | unknown | no hit | - | - |
000615 | Clustered with N16.5 | DY402875.1 | 2.00E-57 | yes | FL593400.1 | 8.00E-18 | unknown | FY301239.1 | 3.00E-47 | unknown |
000372 | Clustered with CalP | GT274134.1 | 3.00E-13 | yes | no hit | - | - | no hit | - | - |
000426 | Clustered with CalP | GT271665.1 | 2.00E-17 | yes | AJ625332.1 | 1.00E-29 | unknown | no hit | - | - |
004131 | Clustered with Pif177 & N16.7 | no hit | - | - | AJ624088.1 | 1.00E-20 | unknown | no hit | - | - |
028433 | Clustered with Pif177 & N16.7 | no hit | - | - | FL492714.1 | 3.00E-12 | unknown | no hit | - | - |
000228 | Clustered with prismin, aspein, shematrin1, shematrin6 | no hit | - | - | FL499052.1 | 1.00E-15 | unknown | no hit | - | - |
000215 | Clustered with KRMP3 | no hit | - | - | FL500067.1 | 1.00E-18 | unknown | no hit | - | - |
000002 | Clustered with KRMP4 | no hit | - | - | FL490015.1 | 4.00E-17 | unknown | no hit | - | - |
000807 | Clustered with shematrin7 | GT274423.1 | 1.00E-15 | yes | no hit | - | - | no hit | - | - |
000496 | N19-like sequence | no hit | - | - | FL498326.1 | 2.00E-25 | unknown | no hit | - | - |
000027 | P & PS specific | GT277644.1 | 4.00E-69 | yes | FL593283.1 | 9.00E-74 | unknown | GR867732.1 | 3.00E-70 | yes |
000488 | P & PS specific | no hit | - | - | no hit | - | - | GT569198.1 | 1.00E-39 | unknown |
000591 | P & PS specific | no hit | - | - | FL490187.1 | 8.00E-42 | unknown | GH735420.1 | 4.00E-58 | unknown |
Abbreviations are: P, pallium; PS, pearl sac.
Discussion
Despite its economic importance, we do not have a comprehensive understanding of the molecular mechanisms involved in biomineralization in pearl oysters, where 2 distinct calcium carbonate crystals are formed in a precisely controlled manner. In this study, we constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster P. fucata, and obtained 29682 unique sequences by using a next-generation sequencer (Table 1 and Fig. 2). Prior to this study, there were only several hundred mRNAs registered in the DDBJ/EMBL/GenBank databases for pearl oysters; we have now identified over 29000 novel gene sequences from P. fucata.
We also screened novel nacreous and prismatic gene candidates by a combined analysis of sequence and expression data sets. We successfully retrieved various novel candidate genes including those encoding protease, protease inhibitors, lysine-rich matrix protein, and secreting calcium-binding proteins. We also examined the transcription levels of known nacreous and prismatic genes in our EST library. Our data showed that known prismatic genes tended to show higher expression levels (2–1034 reads) than nacreous genes (3–400 reads) (see Figs. 4, 5, Table S1), which is consistent with the fact that shell formation is more strongly activated in the ventral region than in the dorsal region of the mantle [28].
In our EST libraries, most known nacreous genes showed higher expression levels in the pallium than in the mantle edge (Fig. 4), whereas most of the known prismatic genes were expressed in both mantle tissues and sometimes at higher levels in the pallium than in the mantle edge (see Fig. 5). Takeuchi and Endo [29] compared the expression levels of shell matrix protein genes between the pallium and mantle edge by real-time PCR and found that nacreous genes including MSI60, N16, and nacrein were specifically or dominantly expressed in the pallium, whereas prismatic genes including aspein, MSI31 [9], and prismalin-14 were expressed in the mantle edge and pallium at similar levels. These results are somewhat consistent with the data in our study. They separated the pallium into dorsal, middle, and ventral parts (Fig. 1A), and found that prismatic genes were expressed in the ventral part of the pallium [29]. The likely reason why various known prismatic genes were expressed in the pallium in this study is that we did not separate the pallium into dorsal and ventral parts. Alternatively, these prismatic genes may also play an important role in nacreous layer formation. Jackson et al. [30] posited that prismatic genes such as shematrins and KRMPs are also important components of nacreous layer formation in P. maxima.
It was also notable that our EST data sets contained genes encoding isoforms of PFMG1, N19, N16s, shematrin1, and shematrin2. Interestingly, tissue-specific expression was clearly observed in each isoform of N19, N16, and shematrin1 (Figs. 4 and 5). N19 was detected only in the pallium whereas N19-2 was detected only in the pearl sac. The expression of N16.6, N16.7, and N16.3 was highly specific to the mantle edge, pallium, and pearl sac, respectively, whereas N16.5 was expressed in both mantle edge and pearl sac. It has been reported that N19 and N16s are contained in the nacreous layer of P. fucata and inhibit calcium carbonate crystallization [12], [17], [18]. Gene duplication often causes divergent expression of paralogous genes [31]. The relationships between these functional differences in tissue-specific isoform expression are under investigation in our research group.
Although the pallium and pearl sac have the same function in terms of nacre-producing activity, our data indicates that the expression patterns of various nacreous genes are not consistent between the 2 tissues. On the other hand, Inoue et al. [32], [33] reported that expression patterns of several shell formation-related genes were similar in the pearl sac and pallium, but different from those in the mantle edge. One possibility is that contaminating tissues surrounding the pearl sac decreased the expression of shell formation-related genes in our pearl sac preparation. The pearl sac is composed of very thin tissues covering the pearl layer; thus, surrounding tissues may contaminate the sample. The other possibility is that different cellular environments may affect expression levels. Molluscan shell formation employs extracellular calcification processes [34]: epithelial cells in the outer mantle secrete organic compounds (extrapallial fluid) and then calcification proceeds in the fluid-filled space (extrapallial space). In the pearl sac, the extrapallial space is supposed to be comparatively small [34]. Therefore, the low expression of certain genes may be sufficient for calcification in the pearl sac.
Calcium ion is an important component of shell formation. However, the molecular mechanisms of molluscan calcium homeostasis including recruitment of calcium ion to the extrapallial fluids remain unclear. P. fucata has at least 3 calcium-binding proteins in the mantle. CaLP [17] and PFMG1 [13] were cloned from a mantle cDNA library and found to induce nucleation of the nacreous layer. Huang et al. [35] isolated an EF-hand calcium-binding protein, EFCBP, from P. fucata and showed that its expression was immediately upregulated when the shell was damaged. We identified 5 novel genes which encode proteins with EF-hand calcium-binding domains (Fig. 7B). Tissue-specific expression patterns suggest that proteins 000493 and 0002138 function in nacreous layer formation, whereas proteins 000262, 000390 and 000594 function in prismatic layer formation.
We also identified a novel gene 000096 which encoded a protein with a putative signal peptide and galactose-binding lectin domain (Fig. 3). Glycoprotein and polysaccharide are major organic components of the molluscan shell and thus lectins, carbohydrate-binding proteins, are likely key regulatory factors in shell formation. To date, at least 4 molluscan shell proteins including mucoperlin [36], dermatropin [37], calprismin [38] and nacrein [39] have been shown to be glycosylated. Various lectins have been isolated from marine bivalves including P. fucata [24], [40], [41]. Perlucin, a C-type lectin, was isolated from the nacreous layer of the abalone inner shell and proved to promote calcium carbonate crystallization [25]–[27]. These lines of evidence together with the tissue-specific expression pattern of 000096 strongly suggest its role in nacreous layer formation.
Bedouet et al. [42] reported the existence of protease inhibitors in the nacreous layer of the pearl oyster P. margaritifera. We also identified a gene encoding a protease inhibitor, SPI, by screening a suppression-subtractive hybridization (SSH) cDNA library of P. fucata [43]. Lie et al. [13] reported a putative secreting protein, PFMG12, from the ESTs of mantle cells of P. fucata, demonstrating its sequence homology with a protease inhibitor containing a Kunitz-like domain. Abalones Haliotis rufescens and H. laevigata contain nacreous proteins including lustrinA [44] and perlwapin [45], respectively, exhibiting sequence homology with a protease inhibitor. Furthermore, Kunitz-type and Kazal-type serine protease inhibitors were recently reported in a proteomic analysis of freshwater bivalve nacre [46]. In our EST library, 2 novel genes, 000372 and 000228, shared significant homology with Kunitz-like and Kazal-type protease inhibitors, and were clustered with known shell formation-related genes (Table 3). These lines of evidence, together with our findings, suggest that protease inhibitors may have a key function in shell formation.
Proteases are important regulators in bio-calcification. In human beings, bone formation is a dynamically steady state balanced by osteoblasts and osteoclasts [47]. Various proteases function to digest extracellular matrix proteins for bone resorption [48]. For example, a metalloprotease mediates collagen digestion. Gene 003764 was retrieved by its homologous expression with N16.3 (Fig. 8, Table 3) and shared significant homology with a metalloendopeptidase (see Table 3). The functional role of 003764 in shell formation is an interesting question to be addressed.
KRMP is a matrix protein containing lysine-rich basic and glycine/tyrosine-rich domains [20]. The lysine-rich domain interacts with negatively charged ions such as those in bicarbonate or acidic matrix proteins [20], whereas the glycine/tyrosine-rich domain is thought to function in protein polymerization via cross-linking. KRMPs are thought to work as linker proteins through these domains between acid-soluble proteins and hydrophobic framework proteins in P. fucata prismatic layer formation [20]. Gene 006605 lacked the glycine/tyrosine-rich domain but retained the lysine-rich domain (Fig. 6A). Instead of the glycine/tyrosine-rich domain, 006605 contained 7 tandem repeats of G(R/W)RR(N/Y/W) at its C terminus. Tandem repeats are often found in framework proteins contained in various biominerals including molluscan shells [1]. Furthermore, 006605 clustered with known nacreous genes such as Pif177 and N16.7, which are specifically expressed in the pallium (Figs. 4 and 8). These results strongly suggest that 006605 is a novel framework protein in P. fucata nacreous layer formation.
In our cluster analysis based on expression data by 454 sequencing, nacreous and prismatic genes formed well-defined clusters (Figs. 4, 5, 8 and 9), indicating that genes with similar functions in terms of nacreous and prismatic layer formation were successfully clustered. Therefore, novel genes clustered with known nacreous and prismatic genes are likely to function in the corresponding layer formations. Genes 002138 and 006605 exhibited sequence homology with known shell formation-related gene, PFMG1 and KRMP1, respectively (Figs. 6 and 7), and formed groups with known nacreous and prismatic genes (Figs. 8 and 9). Therefore, these seem to be good candidates as novel shell formation-related genes. In addition, we found genes 000002 (PFMG4), 000009 (PFMG5), and 000010 (PFMG10) with high expression levels in the mantle edge and pallium were clustered with known prismatic genes (Fig. 9, Table 3). Although PFMG4, PFMG5 and PFMG10 were originally isolated from a mantle cDNA library of P. fucata [13], their functions have remained unclear. Our results strongly suggest their roles in prismatic and nacreous layer formation.
We retrieved 79 shell formation-related gene candidates from P. fucata. Most of the genes, however, shared no similarity with sequences in the EST data sets from other shellfish species (Table 4). Conversely, well-known shell formation-related genes such as AP7 (DDBJ/EMBL/GenBank accession number: AF225916) and perlinhibin (Swiss-Prot accession number: P85035) from abalone were not detected in our P. fucata EST data sets (data not shown). Jackson et al. [30] also showed large-scale compositional differences in mantle EST data sets between pearl oyster P. maxima and abalone H. asiana. These results suggest that highly varied gene sets are involved in shell formation in each species.
In conclusion, we constructed EST data sets from the nacre- and prism-producing tissues in the pearl oyster P. fucata and found 29682 unique sequences containing novel gene candidates for nacreous layer formation, although further functional analyses in vitro and in vivo are required to characterize their activities and functions. In this study, we focused on the major expressed genes (51% of the transcriptome extracted in this study). However, these results do not necessarily mean that other minor genes are not important in shell formation. Microarray analysis blotting of all 29682 genes will be a powerful tool to provide better understanding of the molecular mechanisms involved in molluscan biomineralization.
Supporting Information
Footnotes
Competing Interests: The authors declare that some authors are employed by commercial companies: Kaoru Maeyama and Kikuhiko Okamoto are affiliated with Mikimoto Pharmaceutical CO., LTD, Ise, Mie 516-8581, Japan, whereas Kiyohito Nagai is affiliated with Pearl Research Institute, Mikimoto CO., LTD, Shima Mie 517-0403, Japan. The authors declare that this does not alter their adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in your guide for authors http://www.plosone.org/static/policies.action#sharing. They do not have any other relevant declarations relating to employment, consultancy, patents, products in development or marketed products, etc.
Funding: The authors have no support or funding to report.
References
- 1.Marin F, Luquet G, Marie B, Medakovic D. Molluscan shell proteins: primary structure, origin, and evolution. Cur Top Dev Biol. 2008;80:209–276. doi: 10.1016/S0070-2153(07)80006-8. [DOI] [PubMed] [Google Scholar]
- 2.Weiss IM, Tuross N, Addadi L, Weiner S. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool. 2002;2293:478–491. doi: 10.1002/jez.90004. [DOI] [PubMed] [Google Scholar]
- 3.Addadi L, Raz S, Weiner S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 2003;15:959–970. [Google Scholar]
- 4.Gerhke N, Nassif N, Pinna N, Antonetti M, Gupta HS, et al. Retrosynthesis of nacre via amorphous precursor particles. Chem Mater. 2005;17:6514–6516. [Google Scholar]
- 5.Sarashina I, Endo K. Skeletal matrix proteins of invertebrate animals: Comparative analysis of their amino acid sequences. Paleontol Res. 2006;10:311–336. [Google Scholar]
- 6.Evans JS. "Tuning in" to mollusk shell nacre- and prismatic-associated protein terminal sequences. Implications for biomineralization and the construction of high performance inorganic-organic composites. Chem Rev. 2008;108:4455–4462. doi: 10.1021/cr078251e. [DOI] [PubMed] [Google Scholar]
- 7.Arnaud-Haond S, Goyard E, Vanau V, Herbaut C, Prou J, et al. Pearl formation: persistence of the graft during the entire process of biomineralization. Mar Biotechnol. 2007;9:113–116. doi: 10.1007/s10126-006-6033-5. [DOI] [PubMed] [Google Scholar]
- 8.Fang Z, Feng Q, Chi Y, Xie L, Zhang R. Investigation of cell proliferation and differentiation in the mantle of Pinctada fucata (Bivalve, Mollusca). Mar Biol. 2008;153:745–754. [Google Scholar]
- 9.Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, et al. Structures of mollusc shell framework proteins. Nature. 1997;387:563–564. doi: 10.1038/42391. [DOI] [PubMed] [Google Scholar]
- 10.Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science. 2009;325:1388–1390. doi: 10.1126/science.1173793. [DOI] [PubMed] [Google Scholar]
- 11.Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, et al. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA. 1996;93:9657–9660. doi: 10.1073/pnas.93.18.9657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kono M, Hayashi N, Samata T. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun. 2000;269:213–218. doi: 10.1006/bbrc.2000.2274. [DOI] [PubMed] [Google Scholar]
- 13.Liu H, Liu S, Ge Y, Liu J, Wang X, et al. Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry. 2007;46:844–851. doi: 10.1021/bi061881a. [DOI] [PubMed] [Google Scholar]
- 14.Ma Z, Huang J, Sun J, Wang G, Li C, et al. A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. . J Biol Chem. 2007;282:23253–23263. doi: 10.1074/jbc.M700001200. [DOI] [PubMed] [Google Scholar]
- 15.Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, et al. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett. 1999;462:225–229. doi: 10.1016/s0014-5793(99)01387-3. [DOI] [PubMed] [Google Scholar]
- 16.Yan Z, Fang Z, Ma Z, Deng J, Li S, et al. Biomineralization: functions of calmodulin-like protein in the shell formation of pearl oyster. Biochim Biophys Acta. 2007;1770:1338–1344. doi: 10.1016/j.bbagen.2007.06.018. [DOI] [PubMed] [Google Scholar]
- 17.Yano M, Nagai K, Morimoto K, Miyamoto H. A novel nacre protein N19 in the pearl oyster Pinctada fucata. Biochem Biophys Res Commun. 2007;362:158–163. doi: 10.1016/j.bbrc.2007.07.172. [DOI] [PubMed] [Google Scholar]
- 18.Tsukamoto D, Sarashina I, Endo K. Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun. 2004;320:1175–1180. doi: 10.1016/j.bbrc.2004.06.072. [DOI] [PubMed] [Google Scholar]
- 19.Suzuki M, Murayama E, Inoue H, Ozaki N, Tohse H, et al. Characterization of prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J. 2004;382:205–213. doi: 10.1042/BJ20040319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Zhang C, Xie L, Huang J, Liu X, Zhang R. A novel matrix protein family participating in the prismarin layer framework formation of pearl oyster, Pinctada fucata. Biochem Biophys Res Commun. 2006;344:735–740. doi: 10.1016/j.bbrc.2006.03.179. [DOI] [PubMed] [Google Scholar]
- 21.Takagi R, Miyashita T. Prismin: a new matrix protein family in the Japanese pearl oyster (Pinctada fucata) involved in prismatic layer formation. Zool Sci. 2010;27:416–426. doi: 10.2108/zsj.27.416. [DOI] [PubMed] [Google Scholar]
- 22.Kong Y, Jing G, Yan Z, Li C, Gong N, et al. Cloning and characterization of prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J Biol Chem. 2009;284:10841–10854. doi: 10.1074/jbc.M808357200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Yano M, Nagai K, Morimoto K, Miyamoto H. Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B. 2006;144:254–262. doi: 10.1016/j.cbpb.2006.03.004. [DOI] [PubMed] [Google Scholar]
- 24.Naganuma T, Ogawa T, Hirabayashi J, Kasai K, Kamiya H, et al. Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve, Pteria penguin. Mol Divers. 2006;10:607–618. doi: 10.1007/s11030-006-9051-3. [DOI] [PubMed] [Google Scholar]
- 25.Weiss IM, Kaufmann S, Mann K, Fritz M. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochem Biophys Res Commun. 2000;267:17–21. doi: 10.1006/bbrc.1999.1907. [DOI] [PubMed] [Google Scholar]
- 26.Blank S, Arnoldi M, Khoshnavaz S, Treccani L, Kuntz M, et al. The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc. 2003;212:280–291. doi: 10.1111/j.1365-2818.2003.01263.x. [DOI] [PubMed] [Google Scholar]
- 27.Wang N, Lee YH, Lee J. Recombinant perlucin nucleates the growth of calcium carbonate crystals: molecular cloning and characterization of perlucin from disk abalone, Haliotis discus discus. Comp Biochem Physiol B Biochem Mol Biol. 2008;149:354–361. doi: 10.1016/j.cbpb.2007.10.007. [DOI] [PubMed] [Google Scholar]
- 28.Mao C, Golubic S, Le Campion-Alsumard T, Payri C. Developmental aspects of biomineralization in the Polynesian pearl oyster Pinctada margaritifera var. cumingii. Oceanol Acta. 2001;24:S37–S49. [Google Scholar]
- 29.Takeuchi T, Endo K. Biphasic and dually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Mar Biotechnol. 2006;8:52–61. doi: 10.1007/s10126-005-5037-x. [DOI] [PubMed] [Google Scholar]
- 30.Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, et al. Parallel evolution of nacre building gene sites in molluscs. Mol Biol Evol. 2010;27:591–608. doi: 10.1093/molbev/msp278. [DOI] [PubMed] [Google Scholar]
- 31.Force A, Lynch M, Pickett FB, Amores A, Yan YL, et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–1545. doi: 10.1093/genetics/151.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Inoue N, Ishibashi R, Ishikawa T, Atsumi T, Aoki H, et al. Comparison of expression patterns of shell matrix protein genes in the mantle tissues between high- and low-quality pearl-producing recipients of the pearl oyster Pinctada fucata. Zool Sci. 2010;28:32–36. doi: 10.2108/zsj.28.32. [DOI] [PubMed] [Google Scholar]
- 33.Inoue N, Ishibashi R, Ishikawa T, Atsumi T, Aoki H, et al. Can the quality of pearls from the Japanese pearl oyster (Pinctada fucata) be explained by the gene expression patterns of the major shell matrix proteins in the pearl sac? Mar Biotechnol. 2011;13:48–55. doi: 10.1007/s10126-010-9267-1. [DOI] [PubMed] [Google Scholar]
- 34.Mann S. London: Oxford University Press; 2001. Biomineralization. [Google Scholar]
- 35.Huang J, Zhang C, Ma Z, Xie L, Zhang R. A novel extracellular EF-hand protein involved in the shell formation of pearl oyster. Biochim Biophys Acta. 2007;1770:1037–1044. doi: 10.1016/j.bbagen.2007.03.006. [DOI] [PubMed] [Google Scholar]
- 36.Marin F, Corstjens P, de Gaulejac B, de Vrind-De Jong E, Westbroek P. Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia). J Biol Chem. 2000;275:20667–20675. doi: 10.1074/jbc.M003006200. [DOI] [PubMed] [Google Scholar]
- 37.Marxen JC, Nimtz M, Becker W, Mann K. The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim Biophys Acta. 2003;1650:92–98. doi: 10.1016/s1570-9639(03)00203-6. [DOI] [PubMed] [Google Scholar]
- 38.Marin F, Amons R, Guichard N, Stigter M, Hecker A, et al. Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem. 2005;280:33895–33908. doi: 10.1074/jbc.M506526200. [DOI] [PubMed] [Google Scholar]
- 39.Takakura D, Norizuki M, Ishikawa F, Samata T. Isolation and characterization of the N-linked oligosaccharides in nacrein from Pinctada fucata. Mar Biotechnol (NY) 2008;10:290–296. doi: 10.1007/s10126-007-9063-8. [DOI] [PubMed] [Google Scholar]
- 40.Suzuki T, Mori K. A galactose-specific lectin from the hemolymph of the pearl oyster, Pinctada fucata martensii. Comp Biochem Physiol B. 1989;92:455–462. doi: 10.1016/0305-0491(89)90116-8. [DOI] [PubMed] [Google Scholar]
- 41.Suzuki T, Mori K. Hemolymph lectin of the pearl oyster, Pinctada fucata martensii: a possible non-self recognition system. Dev Comp Immunol. 1990;14:161–173. doi: 10.1016/0145-305x(90)90088-v. [DOI] [PubMed] [Google Scholar]
- 42.Bedouet L, Duplat D, Marie A, Dubost L, Berland S, et al. Heterogeneity of proteinase inhibitor in water-soluble organic matrix from the oyster nacre. Mar Biotech. 2007;9:437–449. doi: 10.1007/s10126-007-7120-y. [DOI] [PubMed] [Google Scholar]
- 43.Wang N, Kinoshita S, Riho C, Maeyama K, Nagai K, et al. Quantitative expression analysis of nacreous shell matrix protein genes in the process of pearl biogenesis. Comp Biochem Physiol B. 2009;154:346–350. doi: 10.1016/j.cbpb.2009.07.012. [DOI] [PubMed] [Google Scholar]
- 44.Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem. 1997;272:32472–32481. doi: 10.1074/jbc.272.51.32472. [DOI] [PubMed] [Google Scholar]
- 45.Treccani L, Mann K, Heinemann F, Fritz M. Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys J. 2006;91:2601–2608. doi: 10.1529/biophysj.106.086108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Marie B, Zanella-Cléon I, Le Roy N, Becchi M, Luquet G, et al. Proteomic analysis of the acid-soluble nacre matrix of the bivalve Unio pictorum: detection of novel carbonic anhydrase and putative protease inhibitor proteins. Chembiochemistry. 2010;11:2138–2147. doi: 10.1002/cbic.201000276. [DOI] [PubMed] [Google Scholar]
- 47.Teitelbaum LS. Bone resportion by osteoclasts. Science. 2000;289:1504–1508. doi: 10.1126/science.289.5484.1504. [DOI] [PubMed] [Google Scholar]
- 48.Tim EC, David AY. Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res. 2010;339:221–235. doi: 10.1007/s00441-009-0887-6. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.