Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Mar 25;20(6):1349–1354. doi: 10.1093/nar/20.6.1349

Non-phenotypic selection of N-methyl-N-nitrosourea-induced mutations in human cells.

F Palombo 1, M Bignami 1, E Dogliotti 1
PMCID: PMC312182  PMID: 1348577

Abstract

The distribution of mutations in a particular gene as detected by a selective mutation assay could be affected by the structural properties of the target protein. To investigate this, we have analysed N-methyl-N-nitrosourea (MNU)-induced mutations in two restriction recognition sequences of a target gene for mutation analysis and compared these data with what previously observed in a phenotypic mutation assay. DNA base changes in the Ncil and EcoRV sites of the gpt gene maintained in human cells by a shuttle vector system were measured by restriction fragment length polymorphism/polymerase chain reaction (RFLP/PCR) technique. After MNU-treatment of human cells, mutations were detected in the Ncil recognition sequence but not in the EcoRV site. DNA sequencing analysis revealed that all Ncil-resistant mutations were GC to AT transitions located over four bases of the Ncil recognition sequence. Only one of these mutations drastically affected the functionality of the GPT protein. The Ncil-resistant mutations were randomly distributed in both DNA strands of the gpt gene and were preferentially targeted at guanine residues flanked 5' by a guanine. Our results indicate that the structure of the GPT protein is the main contributor to the strand-specificity of MNU-induced mutations previously reported by using a phenotypic mutation assay. The potential use of the RFLP/PCR technique as a general tool for mutation detection is also discussed.

Full text

PDF
1349

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cotton R. G. Detection of single base changes in nucleic acids. Biochem J. 1989 Oct 1;263(1):1–10. doi: 10.1042/bj2630001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Felley-Bosco E., Pourzand C., Zijlstra J., Amstad P., Cerutti P. A genotypic mutation system measuring mutations in restriction recognition sequences. Nucleic Acids Res. 1991 Jun 11;19(11):2913–2919. doi: 10.1093/nar/19.11.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  5. Griffin B. E., Björck E., Bjursell G., Lindahl T. Sequence complexity of circular Epstein-Bar virus DNA in transformed cells. J Virol. 1981 Oct;40(1):11–19. doi: 10.1128/jvi.40.1.11-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Horsfall M. J., Gordon A. J., Burns P. A., Zielenska M., van der Vliet G. M., Glickman B. W. Mutational specificity of alkylating agents and the influence of DNA repair. Environ Mol Mutagen. 1990;15(2):107–122. doi: 10.1002/em.2850150208. [DOI] [PubMed] [Google Scholar]
  7. Keohavong P., Thilly W. G. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9253–9257. doi: 10.1073/pnas.86.23.9253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Meuth M. The structure of mutation in mammalian cells. Biochim Biophys Acta. 1990 Jun 1;1032(1):1–17. doi: 10.1016/0304-419x(90)90009-p. [DOI] [PubMed] [Google Scholar]
  9. Miller J. H. Mutational specificity in bacteria. Annu Rev Genet. 1983;17:215–238. doi: 10.1146/annurev.ge.17.120183.001243. [DOI] [PubMed] [Google Scholar]
  10. Nakazawa H., Aguelon A. M., Yamasaki H. Relationship between chemically induced Ha-ras mutation and transformation of BALB/c 3T3 cells: evidence for chemical-specific activation and cell type-specific recruitment of oncogene in transformation. Mol Carcinog. 1990;3(4):202–209. doi: 10.1002/mc.2940030407. [DOI] [PubMed] [Google Scholar]
  11. Palombo F., Dogliotti E. Construction of an EBV-derived shuttle vector for studying the influence of transcription on mutagenesis. Biochim Biophys Acta. 1989 Dec 22;1009(3):251–256. doi: 10.1016/0167-4781(89)90110-3. [DOI] [PubMed] [Google Scholar]
  12. Parry J. M., Shamsher M., Skibinski D. O. Restriction site mutation analysis, a proposed methodology for the detection and study of DNA base changes following mutagen exposure. Mutagenesis. 1990 May;5(3):209–212. doi: 10.1093/mutage/5.3.209. [DOI] [PubMed] [Google Scholar]
  13. Richardson F. C., Boucheron J. A., Skopek T. R., Swenberg J. A. Formation of O6-methyldeoxyguanosine at specific sites in a synthetic oligonucleotide designed to resemble a known mutagenic hotspot. J Biol Chem. 1989 Jan 15;264(2):838–841. [PubMed] [Google Scholar]
  14. Richardson K. K., Crosby R. M., Richardson F. C., Skopek T. R. DNA base changes induced following in vivo exposure of unadapted, adapted or ada- Escherichia coli to N-methyl-N'-nitro-N-nitrosoguanidine. Mol Gen Genet. 1987 Oct;209(3):526–532. doi: 10.1007/BF00331159. [DOI] [PubMed] [Google Scholar]
  15. Richardson K. K., Crosby R. M., Skopek T. R. Mutation spectra of N-ethyl-N'-nitro-N-nitrosoguanidine and 1-(2-hydroxyethyl)-1-nitrosourea in Escherichia coli. Mol Gen Genet. 1988 Nov;214(3):460–466. doi: 10.1007/BF00330481. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  18. Tindall K. R., Kunkel T. A. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988 Aug 9;27(16):6008–6013. doi: 10.1021/bi00416a027. [DOI] [PubMed] [Google Scholar]
  19. Vrieling H., Van Rooijen M. L., Groen N. A., Zdzienicka M. Z., Simons J. W., Lohman P. H., van Zeeland A. A. DNA strand specificity for UV-induced mutations in mammalian cells. Mol Cell Biol. 1989 Mar;9(3):1277–1283. doi: 10.1128/mcb.9.3.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vrieling H., Venema J., van Rooyen M. L., van Hoffen A., Menichini P., Zdzienicka M. Z., Simons J. W., Mullenders L. H., van Zeeland A. A. Strand specificity for UV-induced DNA repair and mutations in the Chinese hamster HPRT gene. Nucleic Acids Res. 1991 May 11;19(9):2411–2415. doi: 10.1093/nar/19.9.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES