Abstract
The ribosomal protein L2 is an essential component of the ribosomal large subunit by its relation to the peptidyl transferase reaction, subunit association and elongation factor G-GTP binding. We have isolated a 937 nucleotide long cDNA encoding a cytoplasmic ribosomal L2 protein. Its deduced protein contains 260 amino acid residues and shows 65% identity with eucaryotic RL2 but only 32% identity with the chloroplast homologue. In addition, the protein presents the PROSITE signature which matches all the 50S and 60S L2 proteins and the two residues involved in the peptidyl transferase activity. The corresponding mRNA is accumulated in young plant tissues, in growing cell suspension and in germinating seeds but is not detectable in mature plant tissues, stationary cell suspension and in dry seeds. The mRNA accumulation is correlated with the growth process. Southern blot hybridization shows that cytoplasmic ribosomal protein L2 is encoded by two types of gene which could originate from each parent. highly homologous L2 genes were also detected by Southern blots in the genomes of several monocot and dicot plant species.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arndt E., Krömer W., Hatakeyama T. Organization and nucleotide sequence of a gene cluster coding for eight ribosomal proteins in the archaebacterium Halobacterium marismortui. J Biol Chem. 1990 Feb 25;265(6):3034–3039. [PubMed] [Google Scholar]
- Auron P. E., Erdelsky K. J., Fahnestock S. R. Chemical modification studies of a protein at the peptidyltransferase site of the Bacillus stearothermophilus ribosome. The 50 S ribosomal subunit is a highly integrated functional unit. J Biol Chem. 1978 Oct 10;253(19):6893–6900. [PubMed] [Google Scholar]
- Bennett M. D., Smith J. B. Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227–274. doi: 10.1098/rstb.1976.0044. [DOI] [PubMed] [Google Scholar]
- Christopher D. A., Cushman J. C., Price C. A., Hallick R. B. Organization of ribosomal protein genes rpl23, rpl2, rps19, rpl22 and rps3 on the Euglena gracilis chloroplast genome. Curr Genet. 1988 Sep;14(3):275–285. doi: 10.1007/BF00376748. [DOI] [PubMed] [Google Scholar]
- Delcasso-Tremousaygue D., Grellet F., Panabieres F., Ananiev E. D., Delseny M. Structural and transcriptional characterization of the external spacer of a ribosomal RNA nuclear gene from a higher plant. Eur J Biochem. 1988 Mar 15;172(3):767–776. doi: 10.1111/j.1432-1033.1988.tb13956.x. [DOI] [PubMed] [Google Scholar]
- Fahnestock S., Erdmann V., Nomura M. Reconstitution of 50S ribosomal subunits from protein-free ribonucleic acid. Biochemistry. 1973 Jan 16;12(2):220–224. doi: 10.1021/bi00726a007. [DOI] [PubMed] [Google Scholar]
- Garret R. A., Müller S., Spierer P., Zimmermann R. A. Letter: Binding of 50 S ribosomal subunit proteins to 23 S RNA of Escherichia coli. J Mol Biol. 1974 Sep 15;88(2):553–557. doi: 10.1016/0022-2836(74)90503-8. [DOI] [PubMed] [Google Scholar]
- Gausing K. Regulation of ribosome production in Escherichia coli: synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates. J Mol Biol. 1977 Sep 25;115(3):335–354. doi: 10.1016/0022-2836(77)90158-9. [DOI] [PubMed] [Google Scholar]
- Gross U., Chen J. H., Kono D. H., Lobo J. G., Yu D. T. High degree of conservation between ribosomal proteins of Yersinia pseudotuberculosis and Escherichia coli. Nucleic Acids Res. 1989 May 11;17(9):3601–3602. doi: 10.1093/nar/17.9.3601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosset J., Marty I., Chartier Y., Meyer Y. mRNAs newly synthesized by tobacco mesophyll protoplasts are wound-inducible. Plant Mol Biol. 1990 Sep;15(3):485–496. doi: 10.1007/BF00019165. [DOI] [PubMed] [Google Scholar]
- Hampl H., Schulze H., Nierhaus K. H. Ribosomal components from Escherichia coli 50 S subunits involved in the reconstitution of peptidyltransferase activity. J Biol Chem. 1981 Mar 10;256(5):2284–2288. [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Hayashi Y., Hirai S., Harayama H., Ichikawa A. Fibroblast growth factor-stimulated growth of porcine aortic endothelial cells depends on hypoxanthine in fetal bovine serum in culture media. Exp Cell Res. 1989 Nov;185(1):217–228. doi: 10.1016/0014-4827(89)90050-5. [DOI] [PubMed] [Google Scholar]
- Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
- Jouanneau J. P., Tandeau de Marsac N. Stepwise effects of cytokinin activity and DNA synthesis upon mitotic cycle events in partially synchronized tobacco cells. Exp Cell Res. 1973 Mar 15;77(1):167–174. doi: 10.1016/0014-4827(73)90565-x. [DOI] [PubMed] [Google Scholar]
- Kavousi M., Giese K., Larrinua I. M., McLaughlin W. E., Subramanian A. R. Nucleotide sequence and map positions of the duplicated gene for maize (Zea mays) chloroplast ribosomal protein L2. Nucleic Acids Res. 1990 Jul 25;18(14):4244–4244. doi: 10.1093/nar/18.14.4244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Kimura J., Watanabe K. The primary structure of ribosomal protein L2 from Bacillus stearothermophilus. Eur J Biochem. 1985 Dec 2;153(2):289–297. doi: 10.1111/j.1432-1033.1985.tb09299.x. [DOI] [PubMed] [Google Scholar]
- Köpke A. K., Wittmann-Liebold B. Comparative studies of ribosomal proteins and their genes from Methanococcus vannielii and other organisms. Can J Microbiol. 1989 Jan;35(1):11–20. doi: 10.1139/m89-003. [DOI] [PubMed] [Google Scholar]
- Lebrun M., Freyssinet G. Nucleotide sequence and characterization of a maize cytoplasmic ribosomal protein S11 cDNA. Plant Mol Biol. 1991 Aug;17(2):265–268. doi: 10.1007/BF00039502. [DOI] [PubMed] [Google Scholar]
- Marquardt O., Roth H. E., Wystup G., Nierhaus K. H. Binding of Escherichia coli ribosomal proteins to 23S RNA under reconstitution conditions for the 50S subunit. Nucleic Acids Res. 1979 Aug 10;6(11):3641–3650. doi: 10.1093/nar/6.11.3641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meinkoth J., Wahl G. Hybridization of nucleic acids immobilized on solid supports. Anal Biochem. 1984 May 1;138(2):267–284. doi: 10.1016/0003-2697(84)90808-x. [DOI] [PubMed] [Google Scholar]
- Nischt R., Gross T., Gatermann K., Swida U., Käufer N. Sequence and regulatory responses of a ribosomal protein gene from the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res. 1987 Feb 25;15(4):1477–1492. doi: 10.1093/nar/15.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohkubo S., Muto A., Kawauchi Y., Yamao F., Osawa S. The ribosomal protein gene cluster of Mycoplasma capricolum. Mol Gen Genet. 1987 Dec;210(2):314–322. doi: 10.1007/BF00325700. [DOI] [PubMed] [Google Scholar]
- Pritchard A. E., Seilhamer J. J., Mahalingam R., Sable C. L., Venuti S. E., Cummings D. J. Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res. 1990 Jan 11;18(1):173–180. doi: 10.1093/nar/18.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Röhl R., Nierhaus K. H. Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1982 Feb;79(3):729–733. doi: 10.1073/pnas.79.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spielmann A., Roux E., von Allmen J. M., Stutz E. The soybean chloroplast genome: complete sequence of the rps19 gene, including flanking parts containing exon 2 of rpl2 (upstream), but rpl22 (downstream). Nucleic Acids Res. 1988 Feb 11;16(3):1199–1199. doi: 10.1093/nar/16.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spierer P., Zimmerman R. A., Mackie G. A. RNA-protein interactions in the ribosome. Binding of 50-S-subunit proteins to 5' and 3' terminal segments of the 23-S RNA. Eur J Biochem. 1975 Apr 1;52(3):459–468. doi: 10.1111/j.1432-1033.1975.tb04014.x. [DOI] [PubMed] [Google Scholar]
- Stöffler G., Daya L., Rak K. H., Garrett R. A. Ribosomal proteins. XXX. Specific protein binding sites on 23S RNA of Escherichia coli. Mol Gen Genet. 1972;114(2):125–133. doi: 10.1007/BF00332783. [DOI] [PubMed] [Google Scholar]
- Teletski C., Käufer N. F. Sequence of the ribosomal protein gene KD4 from Schizosaccharomyces pombe. Nucleic Acids Res. 1989 Dec 11;17(23):10118–10118. doi: 10.1093/nar/17.23.10118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurawski G., Bottomley W., Whitfeld P. R. Junctions of the large single copy region and the inverted repeats in Spinacia oleracea and Nicotiana debneyi chloroplast DNA: sequence of the genes for tRNAHis and the ribosomal proteins S19 and L2. Nucleic Acids Res. 1984 Aug 24;12(16):6547–6558. doi: 10.1093/nar/12.16.6547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurawski G., Zurawski S. M. Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res. 1985 Jun 25;13(12):4521–4526. doi: 10.1093/nar/13.12.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]





